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EXECUTIVE SUMMARY

Studies show that air conditioning systems are one of the major energy consumers in laboratories. The
cost of air conditioning systems can exceed 30% of the total first cost for the entire laboratory building.
Proper system design is one of the efficient ways of reducing the life cycle cost and enhancing the
performance of air conditioning systems. Depending on requirements, laboratory spaces must be either
under positive or under negative pressure. If infiltration or exfiltration exceeds design limitsit may result in
room over- or under-pressurization, loss of pressure zoning, substantial hesat and energy loss, considerable
egress, dust and dirt carryover, and airflow destabilization. Actua operating conditions in a laboratory vary
and can result in imbalance, and airflow destabilization beyond design limits. Such conditions can be
inefficient, unsafe, and negatively impact the work being done in the laboratories.

Engineers have no practical technique to simulate actual airflow, pressures, fan operating points and the
effect of system control in multi-fan laboratory air conditioning systems. That |eads to unexpected
conditions during operation of the system.

The purpose of this prgect is to define the problem and to develop the theory for numerical modeling of
multi-fan systems serving multiple laboratories including determination of pressure in the workspaces and
the position of control elements. This modeling will serve both variable air volume (VAV) and constant
volume (CV) systems.

The necessity for smulation appears in many HVAC designs, such as determining operating performance,
investigating system stability under different operating conditions, retrofitting, emergency conditions and
accidents, fire/smoke protection, pressure and airflow balancing after system modification, and equipment
falure.

Multiple laboratories located in the same building are usualy served by one or more common supply
systems and multiple exhaust systems, individua, manifolded, centralized or combined. Topologicaly the
laboratory air distribution systems can be represented by a number of isomorphic tree-graphs connected at
the terminals.

The genera purpose of the project is to develop and implement a practical tool which is a computer code
that can be used by HVAC engineers in studying, designing, and retrofitting of air distribution systemsin
research laboratories. Numerica modeling of multi-fan air distribution systems for research laboratories is
the first part of this project.

The proposed computer program, named Bdlair, will allow HVAC engineers to caculate actua airflow,
pressures, and fan operating points in laboratory multi-fan air distribution systems as well as static pressure
in laboratory spaces at different operating conditions where space pressurization, confinement zoning, and
flow/pressure stability are the most important requirements. The computer simulation program will alow
to play "what-if" scenarios which are most important to provide flexibility for laboratories with changing
technology.

The computer program Bellair will be capable of modeling the control of each fan or damper from a



sensor located in any place of the system selected by the user including ducts, |aboratories, cabinets,
exhaust stack discharge, etc. The control parameters could be static pressure, total pressure, airflow
volume, air velocity, temperature, and pressure or temperature difference.

Network smulation problem is considered to be sdved when the iteration process that describes
steady-state hydraulic and control conditions is converged. Such problem requires a solution for
alarge system of simultaneous nonlinear algebraic equations. Therefore one of the main goals of

this project is the selection of a numerical method for solving such equations. Numerous methods
capable of solving nonlinear agebraic equations for both branched and cycled networks

smulation are studied. This includes for branched systems: Equivaent Nozzles, Unit Flow, Duct
Characteristic, Equivalent Resistance, Steepest Descent, and T-Method with air leakage. Asfor
cycle systems the more promising approaches are the family of Newton Affine Invariant methods, the
Tensor methods, and the Homotopy methods. If a good initid guess is known, the best choice is one of
the Newton Affine Invariant methods. For a comparatively large problem, when time for solution is
significant, the Tensor methods are a good choice. For the most practical cases, when either: (1) time
is deficient to search for agood initia guess, (2) automation is needed for different types of technical
solutions evaluation, or (3) parametric evaluation is necessary, Homotopy methods are the best. All three
approaches are expected to be included into the computer code and selected automeatically during the
caculation.

All methods for solving nonlinear equations involve the solution of many sets of linear agebraic equations.
For small tasksiit is possible to use smple methods based on direct solution techniques. Whenever there is
sparse matrix, sparse mode elimination techniques may be successfully used. For large and super large
tasks the Krylov’'s method expected to be applied.

Control system simulation requires the use of mathematical programming technique to get the minimization
of an objective function that describes resduals. The Vicente's agorithm is suggested for solving this
problem.

There are four major steps of multi-fan system simulation: (1) defining air flows and pressures for initialy
set control devices, (2) adjustment of positions of control devices in accordance with their set-up, (3)
random selection of the positions of fume hood sashes based on their loading schedules, and (4) system
performance analysis. Asaresult of such caculation user receives airflow, pressures, and velocities at al
system sections and pressures at al system nodes. This includes workspaces, manifolds, fume hood inlet
sashes, stack exhausts, and ductworks. User also receives fan operating points, position of al system
control devices, and electrical energy consumption. Air system performance planed to be studied by
randomly selected positions of sashes and other laboratory units. As soon as user inputs the loading
schedule for each unit, computer randomizes the position of sashes/units and calculates the total usage
(diversity) factor as a recommendation for optimum design.

There are four mgjor fragments of the Bellair program: (1) preprocessor that contains of data input,
verification, and printout, (2) solver that includes calculation routines, (3) postprocessor that performs
verification and printout of the results, (4) populated database.

The main platform for the Bellair code is MS Windows 95/98/NT for IBM PC computers, programming
language is C++, recommended compiler is Visua C++. Demo of the program planed to be installed on the



Internet. Considering inexperienced user with knowledge in duct design but not in duct smulation, the
program must be user-friendly. Data input should be checked while entering. The messages should be
divided into two classes: fatal and warning. They should describe the errors as well as present
recommendations for correction. Full capability of inserting/copying/moving/deleting any part of the data
should be implemented by using data blocking. Help screens should include examples. Graphic
representation shall be used for fitting selection.  The practicality of graphic input for topology and length
has to be investigated. Following are the main steps of devel opment and implementation of the Bellair
program: architecture, coding and debugging, testing, data base development and population, program
installation, Demo, user manual, and program support.



Abstract

The objective of this project is to develop a concept for computer modeling of multi-fan air distribution
systems in research laboratories. Numerical model based on this concept will be capable of analyzing
HVAC equipment, control elements, laboratory equipment, and laboratory spaces as one generalized
system. Constant volume, variable volume, central supply with many exhaust air flow systems are
considered. The goa isto determine the air flows and pressures in a steady-state conditions after initia
data such as the position of fume hood sashes are fixed and the control sensors, controllers, and actuators
have aready established stability. Statistical analysis of opening fume hood sashes based on their
operationa schedules will alow analyzing the effect of pressurization and evauating the efficiency of
generdized air distribution system.  Network simulation problem requires a solution for

alarge system of simultaneous nonlinear algebraic equations. Numerous methods capable of solving

such equations are studied. The most promising approaches are the family of Newton Affine Invariant
methods, the Tensor methods, and the Homotopy methods. If a good initial guess is known, the best
choiceisoneof the Newton Affine Invariant methods. For a comparatively large problem, when time
for solution is significant, the Tensor methods are a good choice. For the most practical cases, when
ether: (1) timeis deficient to search for agood initial guess, (2) automation is needed for different types
of technical solutions evaluation, or (3) parametric evaluation is necessary, Homotopy methods are the
best. All three approaches are expected to be included into the computer code and sel ected automatically
during the calculation. This project consists of the implementation plan for developing a multi-fan
laboratory air flow simulation computer program including computer code devel opment, data base
population, testing, and support.

1. Introduction

Studies show that air conditioning systems are among the major energy consumersin laboratories. The
cost of air-conditioning systems can exceed 30% of the total first cost for the entire |aboratory building
(Neuman and Guven, 1988). Proper system design is one of the efficient ways of reducing life-cycle cost
and enhancing performance of air conditioning systems. Actual operating conditions in a laboratory served
by many supply and exhaust fans vary and can result in under- or over-pressurization, imbalance, and air
flow destabilization beyond design limits. Such conditions can be inefficient, unsafe, and negatively impact
the work being done in the laboratories. Engineers have no practical tool to calculate actua air flows,
pressures, fan operating points and the effect of system control in multi-fan laboratory air-conditioning
systems.

Negative pressure confinements are very important for many laboratories dealing with harmful substances,
such as nuclear materias. Positive pressure confinements are used in the "clean rooms’ in order to
prevent them from contamination. In some laboratories negative or positive pressure originates air
infiltration or exfiltration, and creates a leakage through doorway dits and construction cracks. On the
other hand, high pressure in workspace is also undesirable.  If infiltration or exfiltration exceeds design
limitsit may result in room over- or under-pressurization, 1oss of pressure zoning, substantial heat and
energy loss, considerable egress, dust and dirt carryover, and air flow destabilization.



The need to calculate flow distribution and internal static pressure occurs any time that an engineer is
studying the effect of air flow system performance and control. The necessity for simulation appearsin
many HVAC designs, such as determining system operating performance, investigating system stability
under different operating conditions, system retrofitting, emergency conditions and accidents, fire/lsmoke
protection systems, pressure and air flow baancing after system modification, and equipment failure.

Due to problem complexity, thisis just afirst attempt to develop a practical engineering tool for multi-fan
multi-lab system simulation in such wide range, which combines air flow distribution with control system
and statistica analysis of equipment loading.

Qudity multi-fan system design can be achieved only by using a comprehensive computer program. This
project is targeted to the development and implementation of such computer program that will be used by
HVAC engineers in design and retrofitting of air distribution systemin research laboratories. The
proposed program will alow HVAC engineer to caculate actual air flows, pressures, and fan operating
points in laboratory multi-fan systems as well as the static pressure in laboratory spaces at different
operating conditions where space pressurization, confinement pressure zoning, and flow/pressure stability
are the most important requirements. Such computer smulation program will allow the engineer to play
"what-if" scenarios that are most important in providing flexibility for |aboratories with changing
technology.

This computer program is planned to be distributed through the Internet free of charge and will serve
companies which are involved in design, testing, and balancing of air conditioning systems for laboratories
aswell asthe laboratory staff responsible for HV AC systems maintenance.

The purpose of the this part of the project is to define the problem, to develop the theory for a numerical
modeling of multi-fan multi-lab system including determination of air pressure in the work space (typical
configuration in alaboratory) and to write a plan for development, implementation, and support of
computer code.

The project is divided into the following tasks:

Task One. Problem definition.
The problems of multi-fan air flow distribution was identified and classfied. The mgority
of multi-fan problems can be described by a system of nonlinear smultaneous agebraic
equations. The problem definition consists topologic and hydraulic description of the air
distribution systems as well as the main requirements, types of calculation, limitations and,
findly, problem formulation and main calculation flow chart. Network smulation problem
is considered to be solved when the iteration process that describes steady-state hydraulic
and control conditions for a given position of fume hood sashes in the network is
converged. The next step of problem solution is the statistical selection of sashes
positions based on their schedules. Globa smulation problem is considered to be solved
when the results of the statistical analyses describe the behavior of the system under
different combination of sash positions.

Task Two.  Andysis of existing methods.
Comparing existing numerical methods for solving multi-fan air flow distribution problems.



The existing methods under this study were compared and their strengths and
shortcomings have been described and studied.

Task Three. Problem formalization.
Topology and control principles formalization is a necessary step in development of a
numerical modd.

Task Four.  Numerica model development.
Formalized network has been used to describe the numerical model. The most beneficial
methods for solving a system of nonlinear agebraic smultaneous equations have been
selected and their ability to receive afast convergence was studied.

Task Five.  Software implementation plan development.
Development of an implementation plan to creste, evaluate, and organize technical support
of acomputer program for multi-fan air flow systems smulation.

2. Problem Definition

Multiple laboratories located in the same building are usualy served by alimited number of common supply
systems but multiple number of exhaust systems, individua, manifolded, centraized, or combined. Such
supply and exhaust systems serving rooms and corridors, fume hoods (FH), glove boxes (GB), biological
safety cabinets (BSC) or other equipment, mostly with varying operationa flow requirements.

For Constant VVolume systems (CV) the supply and exhaust air flows once established are kept constant
regardless the change of operation conditions. Thisiswhy CV systems are mostly economically
inefficient and used in laboratories where supply/exhaust air must aways be at the same quantities, likein
many nuclear laboratories.

For Variable Volume Systems (VAV) air flow depends on operation schedule and can be reduced or
sometimes even closed when equipment isin partial use or in no use.

2.1 Topology of air flow systems

Observation of various air flow systems makesiit clear that they possess topologica unity, according to
which any network system can be seen as a version of a general system theory - graph theory. A set of
nodes and arcs, where each arc is contained between two nodesis called agraph. Therefore, adrawing
of any air flow network system is a graph.

In most cases flat graphs that corresponds to flat networks will be analyzed. However, crossing of arcs
on several levels can also take place.

Every node may have one or several corresponding arcs. Their number is called the degr ee of the
node. Line on a graph, which does not go through any node more than once is called a path.

If aline goes through each arc only once, it iscalled achain. A cycleisaclosed chain. If achain can



connect every pair of nodesin agraph, thisgraph iscalledlinked. A linked graph that does not contain
cyclesiscaled atree. A graph containing cycles corresponds to circulation engineering systems (for
example, digtrict heating system). Any branching system is atree. For every pair of nodesin atree there
is one and only one chain that links them.

Let us going to look at trees containing a special node, aroot. In aerodynamic systems a root
corresponds to afan or acompressor. Of course, arooted tree system can contain more than one root.

A chain connecting aroot with a hanging node of atreeis caled abranch. Therefore, in most common
one-root trees the number of branches is equal to the number of hanging nodes - leaves. A nodeto
which two arcs are adjacent is called an elbow. If there are more than two arcs, the node is called a star.

A unique property of the graphsis the flow of their nodes. Graphs are positive or negative depending on
direction of their flow. Direction of flow corresponds to supply, return, and exhaust air flow systems.

All sngle-root trees are characterized by an important property: every group of joined arcs contains only
one arc the flow in which is equa to the sum of al other arc flows with the opposite sign. Such arcis
caled parent section, and al other joined arcs are called children sections. For example, for a system
inthe Fig.1:

Node 1: children - 1, 2, 3, parent - 6;
Node 2: children - 4, 5, 6, parent - 7.

[ ] [ ]
. [ ] [ ] [ ]
L” | L& | L2 |

Fig.1 Tree-graph

During caculation of air flow distribution in networks it is necessary to ded either with dispersion/
gathering of the flowing medium in points of consumption, or with heet transfer. In case of heat transfer
dispersion/gathering is not required, and the medium returns to the charger (fan, pump, compressor). This
creates two isomorphic branched systems (supply and return), connected at the points of consumption and
a theroot. Such systems are called circulation systems. In most cases their supply and return subtrees
aresmilar. A good example of such system is district heating and cooling.

Similar configuration takes place in air conditioning systems if supply and exhaust are considered as two
tree-graphs jointed by the roots and by the terminal nodes that can be rooms, laboratories, common spaces,
or corridors. For laboratories such systems can be more complicated, since they include many exhaust
systems with fans from fume nodes.



Algebraic description of graph topology is done using matrices of linkages and joints.

Square matrix A=(a;) with n rows and n columnsis called a matrix of linkagesif a;; isan element inthe
row i and column j that characterizes presence and sign of an arcin relation to anodei. If the flow is
directed from nodej to nodei, then a; = 1; in &l other casesa;; = 0. For example, the following graph
includes 2 cycles, 7 arcs, and 6 nodes (Fig.2):

1 2 3
> >
1 4
Y - Y| 2 5 |y
3 6
< <
6 5 4

Figure 2. Two-cycle graph
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Connection between arcs p;, p., ... p-, and nodes X, X, ... X- of a graph are characterized with the first
matrix of incidence, E, , where

-1if p; comes out of x;;
&= +1if p; goesinto x;;
0if p; isnot joined to x;;
For graph on Fig.2 the matrix is:

1 |-1 1 0 0 0 0
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2 0 -1 0 0 1 0
3 0 0 0 0 -1 1
4 0 -1 1 0 0 0
5 0 0 -1 1 0 0
6 0 0 0 -1 1 0
7 -1 0 0 0 0 1

The second matrix of incidence, E;;, can also be made. It connects arcs with cycle (cycle graphs) or arcs
with branches (tree graphs).

~No o |wN (e
Rlololo|k|k |-
Ol |,k loklo|n

Sometime laboratory ventilation systems have unique topology that includes two symmetrica
trees connected in the hanging nodes (leaves). Figure 3 represents such topology

1 2 3
o - >
1 4
v| 2 5 |w
3 6
[ < <
6 5 4

Figure 3. Six-arcs symmetric trees

Matrix 1LAvsfor thisgraphis

l1 o o o o Jo Jo
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2 1 0 0 0 0 0

3 0 1 0 0 0 0

4 0 0 1 0 0 0

5 0 1 0 1 0 0

6 0 0 0 0 1 0

The first matrix of incidence, E, , is

1 2 3 4 5 6
1 -1 1 0 0 0 0
2 0 -1 0 0 1 0
3 0 0 0 0 -1 1
4 0 -1 1 0 0 0
5 0 0 -1 1 0 0
6 0 0 0 -1 1 0

The second matrix of incidence, E;, for this graph is:

PR PR OR O

OO B [W[N |-

2.2 Hydraulics of air flow systems
2.2.1 Ducts
The Darcy-Weisbach equation for round and rectangular ductsis (ASHRAE 1997):

afL oV 2r

: DP=¢c—+§C=
Round: g D a 520, (2.1a)
where:
DP = totd pressureloss, Pa[inWG]
f = friction factor, dimensionless
L = duct length, m [ft]
D = duct diameter, m[in]
sC = sum of local loss coefficients, dimensionless
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Vv = average air velocity, m/s [fpm]

r = air density, kg/n® [Ib/ft’]
Oc = dimensiona constant,(kg-m)/(N-s%) [32.0(Ibm-ft)/(Ibf-s%)]
efL  , ovir
Rectangular: DP = é— +aCz (2.1b)
D, 729,
where:
Ds = equivdent-by-friction diameter of rectangular duct, m[in]
Where the equiva ent-by-friction diameter (hydraulic diameter) is
H W
D, =2 2.2
CTHwW @2
where:
H = duct height, m [ft]
W = duct width, m [ft]
By using the continuity equation
V=G/A
where:

G =air flow, m’s
And the aspect ratio for rectangular ducts (r = H/W), the following equations result:

For round ducts:

4
\Y; :BG'ZD (2.39)

For rectangular ducts.

G
V =
— (2.30)

1 .
or V= - G W (2.3¢)

Duct width can be interpreted in terms of an equivalent-by-velocity diameter by equating Equations 2.3a
and 2.3c since Equation 2.3b can be rewritten as Equation 2.4 for round duct

13
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Equations 2.3aand 2.3b yield the equivaent-by-velocity diameter for rectangular ducts (D)
D, =1.128J/HW (25

Air dengity fiis afunction of air temperature and pressure

(P, - 0.378R, )

r =1000 26
287.1+(273.15+T) (26)
where:
Ps = dtatic pressure in duct section, kPa [in\WG]
Pw = partial pressure of water vapor in moist air , kPa[in. WG]
T = air temperature, °C [°F]
Introducing the coefficient i
Round duct; mfL+&CD (2.7)
&fL  , .0
Rectangular ducts: = gD— +a C:D, (2.8)
f 7]

Then subgtitute 1 into the Darcy-Weisbach eguation (2.1a and 2.1b) using Equation 2.3a to obtain the
single duct pressure loss

For round duct: DP =0.811g, 'nr G*D® (2.93)

For rectangular duct: DP =0.811g, 'mr G?D,” (2.9b)

'lgo express the diameter in terms of a pressure loss by using coefficient i yields, where D is equivalent to
V D =0.959(nr ) G%(g, DP) ™ (2.10)

Friction coefficient in variablei is calculated by using Colebrook's equation (1938-39).

i—zlogg 12%e 2.518
J 837D, Re\fj

(2.12)

where:
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a duct absolute roughness, m [ft]

Re = Reynolds number, dimensionless
D,V
Re=—" 2.12)
n
where
n = kinematics viscosity, m/s [ft/g]

Colebrook's formula cannot be solved explicitly, therefore it was simplified by Altshul-Tsal (ASHRAE
1997) as

..0.25
f o= 0.11?_ze + 889
Dh Reﬂ

if f'3 0018 then f =f' (2.13)
if f'<0018 then f =0.85f +0.0028

Friction coefficient obtained by Altshul-Tsa's equation is within 1.6% of those obtained by Colebrook.
Friction coefficient for fully developed laminar flow (Re<2300) is caculated by the following formula:
f=64/Re (219

Research shows that |eak age in an assembled duct (AG) can be estimated by an exponentia equation.
According to ASHRAE (1997) the exponent is 0.65 for turbulent flow

DG=a,C, P’ (2.15)
where:
a, = coefficient, 0.14 x 10° (1.00)

The constant C_, caled leakage class, in this equation reflects the quaity of duct construction and sealing
method. It is based on experimental data and exists in the range from zero for welded ducts to 110 for
rectangular unsealed ducts. The average leakage class C. for rectangular unsealed ductsis 48 (ASHRAE
1997). For laminar type leakage the flow coefficient n is 1. The n coefficient for turbulent flow leskageis
in the range between 0.5 and 1.

DG = ach PSO'GS (2.159)

For typical duct internal static pressure is constantly changing from the static pressure at the fan to the
terminal inlets/outlets due to friction, dynamic losses (fittings), and leakage. Prior to the pressure loss
caculation it is unknown what the static pressure is at each duct section. Considering that duct leakage is
afunction of static pressure in a duct which depends on the location of fittings, Tsa/Behlg'Varvak (Tsa
at.el. 1998) have suggested, instead of using the sum of C-coefficient in the Darcy-Weisbach equation, to
identify sections as a duct between any two fittings.

15



2.2.2 Fittings

Fitting resistance is calculated as a part of Darcy-Weisbach equation and can be represented by the sum
of local resistance C-coefficients in a duct section unless sections are divided between fittings to obtain a
high-level accuracy which is necessary for duct leakage calculation. There are alarge number of tables
and formulas that are used to calculate C-coefficient for fittings. The most valuable source of C-
coefficient is contained in a Handbook of Hydraulic Resistance (Idelchik 1996) and the ASHRAE Duct
Fitting Database (DFDB 1994).

Depending on the type of calculation, fittings can be divided into two parts. fixed and variable. Fixed
fitting is the one for which its C-coefficient does not depend on unknown variables, therefore it can be
calculated once at the beginning of the calculation process and does not need to be recalculated during
iterations. For example, the round smooth elbow is a fixed fitting because its resistance depends only on
the angle and the ratio of curved radius to the duct diameter. However, the round mittered elbow is a
variable fitting because its C-coefficient depends on Reynolds number which includes air flow velocity; but
this velocity is afunction from air flow which is an unknown variable. Local resistance coefficients for
variable fittings have to be calculated in every iteration due to the change of air flow.

There is awell-known phenomenon when C-coefficient becomes negative. Such negative C-coefficient
mostly take place in junctions, converging and diverging, and interpreted as a pressure gain due to the
transformation of energy instead of pressure loss. There is no "free energy” since the additional pressure
always came from the another joint stream.

2.2.3 Infiltration and exfiltration

Infiltration or exfiltration to/from a room depends on pressure difference between this room and
surrounding space. Air may leak through cracks and chapsin walls, ceilings, around closed doors, and
electrical conduits. ASHRAE 1997 Handbook (Chapter 25, Equation 34) presents the following formula
for leakage calculation

Q=c(DP)" (2.16)
where:
c = flow coefficient, (m/s-Pa” [cfm/in WG]
n = flow exponent between 0.6 and 0.7 (assumed 0.65), dimensionless

ASHRAE Handbook presents the coefficients ¢ and n for variety of building components. The results of
experimental study of these coefficients were published by Ahmed et.al. (1998).

2.2.4 Fans

The ventilation system in research laboratories can be served by alarge number of fans, supply and
exhaust. Computer program proposed under this project will be capable of modding a system with many
fans. Fan characteristic is the function between fan total pressure (Py) and discharge flow (Qy) for each
rotation speed (Ny). This characteristic can be approximated either (1) by piecewise-linear way or (2) by

16



anumber of polynomias

Rotation N1 Qr=a,+a, P+ ags sz + ay Pf3
Rotation N Q= @y + &, Pr+ @ PF + &y PP
Rotation N, Qr=an+ 8o Pr+ 85 PA + a, PY

or amore complicated function (Stoecker 1975)

Qf :Cl+CZPf +CSPf2 +C4N +C5N2 +C6Pf N+C7Pf2N +08Pf N2 +09Pf2N2 (217)

This function can be smplified by using the "Fan Laws' (ASHRAE 1996)

N
Qi =Qi2 (2189)
2
2
aN, 0
P, =P, g—Nl ; (2.18b)
2

Using these equations referenced only to one basic fan curve, the other curves for different rotation can
be easily calculated.

Large number of fans manufactured and the absence of a common fan database always creates a
problem for the program user who is trying to represent afan curve by aformula. The easiest way isto
input a number of representative points and approximate fan curve by lines joining these points. This can
be done in a number of ways depending on selected contral:

(@] Control by adamper. Input afew flows, pressures, and break horse powers
(recommended not more than 8 points) and approximate the distance between them with
sraight lines.

2 Control by fan rotation. Input the base fan curve in the same way as above and calculate
other fan curves using "Fan Laws"

3 Control by pitch (not practical for studied application).

(@) Controlled by inlet vane. The fan curve is afunction of the vane angle presented as a per
cent from fully open vanes. In generd, thisfunction is different for each fan aswell as
for the manufacturer; however, at the time of computer program development the study
should be made how this function should be either generalized or presented in a database.

The most undesirable option is contacting fan manufacturers to get the necessary data.
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A very important element in calculating available discharge fan pressure is system effect factor (AMCA
1973). However, the ASHRAE is interpreting this effect as a fitting with variable C-coefficient.

2.2.5 Fume hoods

Hydraulic resistance of a fume hood (FH) depends on its types and construction. The most important
three parameters:
constant or variable volume air flow,

(1) constant or variable face velocity,

(2) existence of a secondary auxiliary supply.

Auxiliary supply can be interpreted as an individua supply system that effects the room pressure
(see "Problem Formalization" below). Also, afume hood may have an individua exhaust fan and

aHEPA filter. Hydraulic resistance for variable volume fume hood depends on the position of the
sash and the entry air velocity.

2.2.6 Air flow systems

Relationship between air flow (G), pressure losses (AP)) and resistances (s) for systems with cyclesis
similar to the first and the second Kirchoff laws.

For any node

— Qo

G =0, i=1..p, j=Ll..q (2.19)

For any c-cycle
DP =0, i=1..,p, c=1...,k (2.190)

nmo

For any c-branch in atree

8DR =P,  i=L..p, c=L..k (2.190)

The last two systems of equations are nonlinear (quadratic) and describes the relationship between
pressures and flows for each sectioni (smilar to Ohm's law):

DP =sG.’ (2.20)

As aresult, the system can be presented as a graph that includes p sections, g nodes and k cycles or
branches. On this basis, a system of p equations with p unknowns can be developed. This system includes
two parts. Thefirst part is linear and is based on system of equations 2.18 for ¢+1 nodes. The second part
describes equations 2.19 and 2.20 for k independent cycles. The number of these cyclesis K=p-g+1.
However, in order to develop a system of equations, one needs to know the direction of flow at each
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section.

In anumber of technical systems direction of flow is known. Moreover, the directions of flow can be
determined by the topology of the system. In many air flow systems with central supply and centra
exhaust fans the direction of air flow is easy to determine. But some systems create avicious circle,
where directions of flows are defined by solving the system of equations, while the development of this
system depends on the directions of flows.

Thereis no such problem for electrical systems, because of the sign rule. According to this rule, one can
arbitrarily assign directions of currents, and then develop a system of equations based on these directions.
The solution will show negative flows in some sections, which means that directions of currentsin these
sections need to be changed. But absolute values of currents stay unchanged. However, nonlinear
aerodynamic systems do not alow determining correct directions of flows from signs of resulting flows.
To make things worse, in some fittings the resistance (s) can be a function of flow.

At the same time, change of direction in one section causes changes of flowsin all others. The genera
system of equations for flow distribution in quadratic aerodynamic systems with known flow directions can
be represented in a matrix form vector p-dimensional space:

AG=0 (2.21)
BSGx=BP (222
where:
X = vector of flows, one-column matrix.

A = matrix of node coefficients. Coefficient a at intersections of its rows (nodes) and
columns (sections) are equal to +1 if the flow is directed towards the node, and -1 if
the flow isdirected away from the node. Zeros are put in places where the node and
the section do not intersect.
B = matrix of coincidences of sections (columns) and cycles (rows). If the direction of flow
coincides with the arbitrarily assigned direction of flow for the cycle, +1 is placed at
the section/cycle eement. In the opposite case, -1 is placed.

S = gguare diagona p-dimensional matrix, where the flow vector components are located
aong the diagond.
P = vector of pressures, one-column matrix.

Solution of systems (4) and (5) is possible through use of numerical methods and computers. But that
requires knowing directions of flowsin al sections, and that means that the matrix A is quite determined.
Any linear transformation of this matrix that is connected with sign change in its columnsis inadmissible.
2.3 Main requirements

Following are the main requirements for air distribution systems:

(1) Safety. The major safety requirement for a laboratory that contains contaminated materiasisto
establish room pressurization that prevents contaminants from moving into a less contaminated room
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(negative pressurization). For example, there is a number of consecutive pressure zones in nuclear
laboratories where negative pressure differences between zones prevent less contaminated zones from
being contaminated by more contaminated zones. The pressurization effect depends on many system
elements such as fans, dampers, infiltration/exfiltration, pressure control, etc. |If aroom has a pressure
different from that of surrounding space, it creates infiltration or exfiltration that balances the difference
between supply and exhaust air flow.

For ahermeticaly sedled room the volumes of supply and exhaust air are equal. In spite of this, the room
can be under positive or negative pressure depending on the position of a"zero" pressure point in the duct
system. Inredlity, no room can be sealed hermeticaly. Therefore it has infiltration or exfiltration
depending on the "zero" point location.

Flow cascading is one of the main techniques used in room pressurization. There is an important limitation
in this project that is the study of steady-state regime when all doorways are either closed or have
airlocks.

The main safety requirement is to develop and control an air flow distribution system capable of
maintaining effective laboratory pressurization to prevent contamination.

(2) Process. There are a number of requirements for laboratory equipment to maintain certain air
velocity or air flow that effects the technological process. For example, there is a minimum-maximum
velocity limit for air flow through a sash. Other example is the minimum velocity at stack exhaust. Also,
necessity to maintain positive pressure in a clean room belongs to the process requirements. Thereis no
strong boundary between safety and process requirements.

(3) Comfort. Itisnecessary to maintain the comfort conditions in the laboratories including the minimum
percent of ventilation air volume, temperature, humidity, and air cleanness, as well as not exceeding the
maximum noise level.

The following list is the summary of the most common requirements for air flow distribution system in
laboratories. It isrequired for each room to maintain:

-- Pressure zone in the minimum-maximum range,

- Ventilation ar volume above the minimum,

- Face air velocity in FH and BSC sashes,

- Air velocity at the stack discharge,

- Temperature, relative humidity, and air velocity in the working zone

2.4 Types of calculations
There are two major types of calculation: optimization and smulation. Optimization takes place during
system design while the smulation is applicable for retrofitting and modeling when engineering systems are

analyzed for performance.

Optimization selects duct sizes and fan pressure by minimizing the system life cycle cost. Unfortunately,
in redlity optimization is substituted by sizing based on engineering judgement.
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There are three types of boundary conditions associated with air system design:

(@] Boundary conditions are presented by pressures at terminals, P, and by fan pressure, P
Depending on system pressures for terminal sections or fan curve may be given. This type of
boundary conditions can be called the boundary conditions of the first rank.

2 If flows are known, boundary conditions are considered to be of the second rank.
3 If boundary conditions are presented as a mix of flows and pressures they are considered to be of
the third rank.

It can be proven that in such cases boundary conditions may be presented too generaly and a problem
could be incorrectly determined. For example, for systems with the third rank of boundary conditions one
can get asingle solution, an infinite number of solutions, or no solution at dl. Therefore additiond data
(conditions of optimization) are necessary in order to formulate the problem correctly.

Getting a solution of a simulation problem means determining flows, pressures, and velocities for a
system with known sizes, already selected fans, established fan rotation and angles of dampers. Boundary
conditions for smulation problems can require only alimited number of parameters, flows or pressures at
system nodes.

The problem under this project is that of system simulation and assumes that al equipment, fans, duct
sizes, and control devices have already been selected at design phase or represent an existing system.

There are strong requirements as to the number and location of control devices. A smplerule "the
number of control devices has to be the same as the number of controlled parameters’ works many times.

It can be shown on a simple example, where a system consists of a single duct section with afan and two
dampers controlling pressure in the room. This system is overdefined and cannot work sufficiently since
there is an infinite number of dampers angles for each pressure resistance in the duct.

There are many types of air distribution systems which depends on their application and purpose: constant
volume (CV), variable air volume (VAV), individua, centralized, manifolded, branched, cycled, or
combined with fans connected in parallel or in series. Also, thereisavariety of system elements: fans,
ducts, fittings, plenums, dampers, filters, heating and cooling coils, fume hoods and biologicd safety
cabinets, infiltration/ exfiltration resistances, more. Also, the rooms/spaces by themsealves are system
nodes in topologica sense. Many system elements can be applicable for use under different conditions,
for example, two types of fume hoods: (1) constant velocity and constant volume, and (2) constant velocity
and variable volume.

2.5 Limitations
The following limitations to the problem solution will be encountered:
(@] Simulated network is limited to laboratory rooms that are served by the same centra
supply system. Only a single supply system with many exhaust/return systems are

allowed,
2 No economizer solution
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3 Only identical fans can be connected in paralé

4 No dual-duct systems

5) Only steady-state conditions are simulated

(6) Only systems that can be reduced to a flat graph are encountered

(7 All doorways are considered closed

8 No wind effect

9 Ambient air pressure in the surrounding rooms that are not served by the common supply
system is assumed atmospheric

(10)  No thermal forces like stack effects

2.6 Problem formulation

In general the goal of this project isto develop a practica technique that will be used as atool for studying
air flow and pressure in laboratories under different conditions. Proposed tool is a computer program,
named BELLAIR, capable of identifying the situations when pressure confinements, process
requirements, and/or comfort conditions are violated. This program will identify the cause of violating the
requirements described above in part 2.3 "Main Requirements' and be used for studying preventive
measures.

Following are the problem formulation for the proposed computer simulation code that includes four nested
steps:

(@] Air flow modeling. Calculate air flows, pressures, velocities, and air leakage for each
section of ar distribution system under the following conditions:

-- Known topology, equipment, and sizes,

- Known RPM (or inlet vanes opening per cent) for each fan,
- Known angle for each damper,

- Known open face area for each sash.

2 Control system modeling. Identify the position of al control devices as a function of
the set points including rotation for al fans, percentage of opening for inlet vanes, and
angle of dampers. The positions of control devices have to be obtained for given open
face area of fume hoods and biological safety cabinets. The goa of the control system
modeling is to identify the position of actuators that satisfy following requirements:

-- Required pressure zoning,

-- Minimum ventilation rate,

- Temperature/humidity range,

-- Air velocity range where it is required by process.

3 Statistical modeling. Conduct a statistical selection of the position of each sash that
depends on its working schedule. The position of the sash will be assigned randomly
according to the selected time of the day and the schedule presented in input data. The
idea of statistical modeling was presented by Dale Sartor (Lawrence Berkeley National
Laboratory, San Francisco).
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(3) Usage (diversity) factor calculation. It isknown that all FH/BSC in many laboratories are
not used smultaneoudly. A system usage (diversity) factor is the maximum number of
exhaust devices in operation the same time (ASHRAE 1995). The computer program should
create a usage (diversity) factor based on the results of the statistical analyses.

3. Mathematical and engineering methods for network simulation
3.1 Branched systems

There are afew numerical methods and computer programs for calculating flow distribution in a branched
duct system. The oldest flow smulation method, called equivalent nozzles, was developed in Germany
at the end of the 19th century by Bless (Lobaev 1959, p.79). The intent of this method is to substitute the
resistance of ductwork by the equivaent resistance of anozzle. The cross-section of the nozzleis then
calculated in such away those for the same flow the pressure losses in the system and at the nozzle are
the same. Then, by computing the flow at this nozzle from the known pressure difference, the flow
through each section can be calculated. The main shortcoming of this method is the need to iterate the
diameters of parallel sections. The method is oriented to the quadratic law of resistance, which is seldom
used for HVAC duct design.

The unit flow method was devel oped by Kamenev (1938). This method is used to calculate flow
distribution in an existing system and assumes flow through the terminal section is equa to one unit of
flow. Then the pressure loss per one flow unit is calculated for sections connected in paralle and in
series. Flow is proportional to the number of units for each section. This method, as well asthe
equivalent nozzle method, is used in cases of quadratic law friction, which applies only when the duct
velocity is greater than 70 m/s (13,700 fpm). Thisvelocity isimpractical for HVAC ducts.

The duct characteristic method was developed by Butakov (1949). Butakov used the old friction
coefficient formula developed by Bless and substituted it into the Darcy-Weisbach equation. Then he
substituted lengths, C-coefficients, and diameters for coefficients called duct characteristics and derived
formulas for calculating these coefficients for sections connected in parallel and series. An important
shortcoming of this method is that the use of Bless's formula results in a 20% difference between pressure
loss by Colebrook (1938-1939) or Altshul (1975). This method aso can be used only for ducts operating in
the quadratic law friction range.

The equivalent resistance method was developed by Lobaev (1959) and can be used for duct sizing and
system simulation. This method is almost the same as the duct char acteristic method. Instead of using
Blesss formulafor caculating friction coefficients, Lobaev applied his smplified formula for meta ducts
to obtain afunction of hydraulics similarity that depends on friction coefficient, length, diameter, and C-
coefficient.

The steepest descent method was applied for duct smulation by Tsal and Shor (1967) and implemented
as a computer program. The objective function is the sum of square differences between fan pressure
and pressure losses in branches, and the flows are the unknown variables of a system of nonlinear
equations. The gradient is defined as aresult of calculating a matrix of partia derivatives. The descent
step is normalized at each iteration as a function of maximum gradient-vector. If the gradient is positive, it
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isdivided by two. The authors reported the development of a computer program for calculating the flow
distribution in branches, correcting the fan operating point in the case of a change of flow, and calculating
the required brake horsepower. Mgjor applications are industria exhaust systems conveying dust where
dampers are prohibited. Tsal and Chechik (1968) developed the dgorithm for flow distribution, based on
the Bellman's dynamic programming method. The authors noted that this method is more difficult for
implementation than the steepest descent method, but it has no convergence problems. The duct system
isdivided into a number of stages. Different pressure levels are assigned for each stage, and the method
is based on avariation of flows at each pressure level. Only flows that correspond to the same pressure
losses at branches are stored. Fan pressure is analyzed when the dynamic calculation process reaches the
root section. The use of the dynamic programming method may be limited by available computer memory.

It should be noted that Tsal's and Chechik's book was published in 1968 when computers had limited
memory.

The T-M ethod, based on Bellman's Dynamic Programming ideas, has been developed by the author in
cooperation with ASHRAE as a design tool for a single-root duct system simulation (Tsal, Behls, Mangd,
1990). T-Method (ASHRAE, 1997) is based on the same tee-staging idea as Dynamic Programming
(Bellman 1957; Tsal and Shor 1967; Tsal and Chechik 1968). T-Method incorporates the following major
procedures. (1) System condensing. Condenses the branched tree system into a single imaginary duct
section with identical hydraulic characteristics and the same owning cost as the entire system (2) Selection
of an operating point. Determines system flow and pressure by locating intersection of fan and system
curves, (3) System expansion. Expands the condensed imaginary duct section into the original system with
flow distribution. The T-method duct simulation determines the flow within each section of a duct system
for known duct sizes and fan characteristics. The shortcoming of the T-Method is that it calcul ates tree-
networks only.

A computer program called T-Duct based on T-Method was developed by R.J.Tsa (T-Duct 1994) in 1993
and successfully used for smulating duct systems with a tree-graph topology and a single fan located at
the root. However, the T-Method is not capable of simulating the laboratory multi-fan systemsiif it is
represented.

The Steepest Descent method is effectively used for modeling duct systems (Tsal and Shor 1967).
Fan curve shows the relation between fan flow and fan total pressure:

Pt = T (Gan)
Thetask isto find flow distribution in all system branches for known fan curve and known duct sizes.

Let us number sections and nodes of a system in the following manner:
{& (N}, k=1, ..., t; are numbers of sections related to the noder,
AP;is pressure loss at section ,
Gyisflow at section &

The following equations take place:
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t,
1) ké—zeak”) =G, ) r=1...m (3.)

where:
a1(r) = section number linked to the noderr,
m = number of nodes in the system,
tr = number of sections linked to the noder.
2) Pfan(Gfan) - é DPa = 0’ I :l"" p (32)
al M;
where:
Mi = sat of aindices, corresponding to sections included in branchi,
p = number of branches in the system.

Notice that AP is the total pressure loss, including both friction and fitting losses. When the diameters are
known, APy depends only on Gx (.

On the other hand,

Ga = Aé Gi (33)
1R,
where:
Ra = set of branch indices that are the children of section a If G (i = 1,..., p) are undefined
variables, and G4 is determined according to the Formula 3.3, then the Equation 3.1 will be
satisfied.

Pressure loss AP4 can be looked at as afunction of G. Therefore, the task of flow distribution isto find a
vector { G}, which satisfies the following system of equations:

Pfanga}a;Gj g_ aiéMi DFZI ({GJ}): O’ i’ J :1""’ p (34)

Let us view our problem as a minimization of the function:
p
F=4R’

i=1

Where the residuas in Equation (3.4) are:

R = Pfan ?;a;Gj 2- aTéMi DPa ({Gl }) (35)

The vector-gradient is caculated using the following formula:
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j=1..,p (36)

The derivatives |l %Iv) are hard to get in explicit form. Therefore, they are substituted by

finite differences;

19F § R(G,,...G, +d....G,)- R(G,,...G,,...G,)
T'HG ?; d

3.7)

Let uslook at the algorithm of the gradient descent in more detail and set the initial air flow:
(0 ©
G ,..,G,

Fan curveis apart of input data. It can be approximated as a flow-pressure at a number of selected
points. A partial case is considered when fan pressure Py, is predetermined. Fan pressureis caculated as
afunction of fan curve and airflow using linear interpolation. The criterion of convergence is the following

condition: _
Sgn(l:)fan - é- I:]:)a ({GJ}))
P

fan

< max res, hLj=1.,p

where:
maxres = maximum residuas

Then derivatives are calculated as

F
G

1
1 (38
1}

E» 24 R R(G....G, +d,...,Gﬁ- R (GG 1 G, )
j=1

The descent step is determined by the maximum component of the gradient. The first step is
h=0.25max G

Then & (the coefficient of descent) is
_ I TF §

I =h/max] — (39)
191G, E;

And the corrected air flows at k+1 (the next step) are:
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I IF §

Gi(k+1) :Gi(k) N ’
116,

i=L.,p (3.10)

At the beginning steps are large and descent is fast, but in time steps must be made smaller so that
accuracy will not be lost. Therefore whenever the absolute value

5
maxaeﬂF T
G 5

rises, the step is divided in two.

Convergence of this method to a global minimum is guaranteed only for a concave function F. It is
difficult to prove that the F function is concave due to the complicated function AP;. However, numerous
calculations show that convergence is very good.

On the basis of the method of steepest descent R.J.Tsal created and successfully used for many years a
computer program, which smulates ventilation systems (Tsal and Shor 1967). This program not only
alows one to solve the problem of airflow distribution, but also corrects fan pressure in accordance with
the characteristic of the fan when the flow changes and determines the power necessary.

Tsal (1998) has recently presented t-Method with Duct Leakage. The purpose of T-method smulation is
to determine the flow within each section of a branched duct system of known duct sizes and fan
characteristics. Incorporating duct leakage means that downstream airflow at each section is different
from upstream due to air leakage through the duct walls. T-method with duct leakage incorporates the
following maor procedures:.

System condensing. Condense the branched tree system into a single imaginary duct
section with identical hydraulic characteristics. Duct leakage is smulated as an additional duct section
and connected in parallel to each duct section in aduct system.

Selection of an operating point. Determine the system flow and pressure by locating the intersection of
the system characteristic and the fan performance curve.

System expansion. Expand the condensed imaginary duct section into the origina system with flow
digtribution.

Leakage at the i-section is smulated as an additional x;-section that is connected in parald to section i at
the node. Pressure loss for the x;-section is the same as for section i and air flow for both sectionsis
G=G+G,;. Thisisthe mainidea of incorporating duct leskage into the T-Method. Therefore the same
formulas that are used by the T-Method without duct leakage are used for the T-Method with leakage
incorporated. The differenceis four parallel sections at each node instead of two. Condensing duct
sections connected in series yields Equation 3.11 (Tsal et d. 1990, Equation 12).
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- _2\05
Kio = (Kl + K, 2) (3.11)
where:
K = hydraulic characteristic of a duct section

Condensing duct sections connected in parald yields

Ki, =K +K, +K, +K, (312

where:
Kx = hydraulic characteristic of leakage section connected to the main section in pardle

Condensing atee yields Equation 3.13
K., =[(K, +K, +KX1+KX2)‘2 +K3'2]'°'5 (3.13)

The selection and expansion procedures for T-Method duct simulation with leakage incorporated are the
same as without leakage (Tsal et a. 1990).

3.2 Cycle systems

3.2.1 Methodsfor solving systems of nonlinear equations

The first method for water distribution in cycle systems was devel oped by Andriyashev and published in
1932 (Andriyashev 1932). In two years Lobachev (1934) published different technique. Hardy Cross
from the Illinois University published his method in 1936 (Cross 1936).

For cycle network systems Martin and Peters (1963) first used the Newton-Raphson method for water
supply systems. Stoecker et a. (1974) for simulating centra chilled-water systems and Gregory et al.
(1975) for duct systems and was later implemented into a computer code called TVENT1P. The main
purpose of this program is dynamic modeling of a duct system for tornado conditions using eectrica
andogy for aloop system. TVENT1P uses only fixed resistance coefficients; therefore, after every
iteration, the program must be interrupted. Then, C-coefficients based on output flows must be
recalculated and used as input data for the next iteration. New C-coefficients have to be calculated
manudly for al junctions, transitions, and elbows when the C-coefficient is a function of flow, velocity, or
Reynolds number. Walton (1984) successfully used the Newton method for natural airflow modeling in
buildings and managed to increase the converging speed (AIRNET computer program). According to
Walton (1984) a great contribution to the method used in AIRNET was provided by James Axley (1988).

The use of the Newton method was studied by Lam and Wolla (1972). They anayzed the benefits and
shortcomings of the Newton method as: (1) difficulties in getting the initial guess by establishing flow
directions, (2) computational difficulties in determining the Jacobian derivatives, and (3) high n® cost of
solving the equations.

The following three methods are most suitable for solving our problem: Affine invariant Newton method,
Tensor method, and Homotopy method. However, the Homotopy method should be considered as the
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method of choice. Discussion about why we came to this conclusion will be presented after detailed
analysis of each method. Very significant for the effective code programming is the method for
approximating the Jacobian. This discussion will include different techniques for Jacobian caculations.
Finally, numerical comparison between different techniques for solving linear equations will be furnished.
In last five years numerical solution of linear equations gained a number of new powerful techniques.
Now it is possible to reduce the computation time using such new techniques.

Numerical method for nonlinear algebraic equations has along history. The state-of -art description
presented in the excellent books by Rabinowitz (1970), Ortega (1970), Ostrowski (1966), Dennis (1983),
and Shnabel (1984). A review of this subject is presented in the excellent book of Nocedal and Wrigth.
(1998).

Definition of this problem: a system of nonlinear equations is mapping function F from Rn to Rn , for

which asolution of x is required under conditions F(x)=0. The techniques of solving this system of
equations can be interpreted using optimization techniques. In both optimization and solution for nonlinear
equations Newton’s method lies at the heart of many interesting algorithms. Features such as line search,
trust regions, and inexact solution of the linear algebra subproblems at each iteration are very important in
nonlinear equations. The most common methods for such analysis are: Newton's, Broyden's, Tensor,
and Homotopy.

3.2.2 Newton’'s method

Let us define alinear moddl function |\, by taking the first two terms of the Teylor's series for Fxk

M (P) =F (X +I(x) P » F(x+ p) (3.14)
It is assumed in Newton's method that J(X,) is nonsingular and defines as
P =- (I(x)) F(X): Xers = X + Py (3.15)

If we assume that current iteration X iscloseto X and J(Xi) isnons ngular convergence of Newton's

method is proven (symbol * means good approximation). When Lipschitz continuity assumption is
satisfied, we can prove that stronger convergence results indicate quadratic convergence. In theideal

circumstances (closeness of X« to the solution, availability of J, exacts caculation of p, ), the basic
Newton's method converges well. However these circumstances usualy arrives only at the end of the
solution, if ever.

Shortcomings of Newton's method include:

(1) When the starting point is remote from a solution, the basic Newton method can behave
erratically. There is no guarantee that it will eventually approach a solution.

(2) The Jacobian Jisrequired. In many circumstances it is difficult or impossible for the user to
supply computer code to calculate this matrix.
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(3) TheNewton step p, isusudly defined by solving the linear system J(x,) p, =- F(x,) . It
may be too difficult to define an exact solution to this system when n is alarge number. It may
even be too difficult to store the coefficient matrix J(x,) -

(4) The Jacobian may be singular at the root xk

Newton’s method can be modified and enhanced in various ways to gets around of the most of these
problems.

Newton-Raphson method generally assures fast convergence. However, Newton-Raphson method may
fail. Good explanation of this phenomenon was presented by the M.J.D.Powel (Rabinowitz, 1970).

He shows that the damped Newton-Raphson method in the form of

kel _ ko | k dk (316)

Where | iscalculated to prevent the estimate X from being worse than the estimate XY Letuse
the sum of squares of residuals

Fo=a[ti(f (317

Let uscaculate | “ to achievethe improvement

F(“™) <F(") (3.18)

It is possible to obtain this inequality becauseif J ® isnons ngular, algebra presents the result in the
following expression

;T?F(X(k)ﬂ d(k))ﬁz -2F(X(k))< 0 (3.19)

unless X(k) is dready a solution of the equations. According to Powel (Rabinowitz, 1970), one recurring

deficiency of this algorithm is that the successive estimates X, X**? ..., X™,... may convergeto a
point where equations are not satisfied. Also there is an obvious change to the variables that will decrease
al theresiduals f,(X) because the point of convergence is not the stationary point. Modification to the
classical Newton-Raphson iteration, which overcomes the deficiency, is an agorithm where Equation 3.16
is replaced by the iteration

(k+1) _ (k) (%)
x —x *th (320)
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Where N is the solution for the followi ng System of linear equations

3 (k) 3«

] U y .
Im 1,8 Juagh, =78 3y 16D =12en (321

j=1 t=1 t=1

The matrix | is the unit matrix and M is the non- negative parameter. These values are calculated to

provide theinequality F(X**?) < F(x"). Notethat M =0 isthe dassica iteration, and, if M"*
becomes large, the solution of the linear equations tends to be the value

Ve

g 187 U
-8 0 6 = S a—Feg  Im
ﬂxi u(

t=1 pas
(322)

showing that h® tendsto asmall negative multiple of the gradient of F(x) a X = X“. Therefore large
vaues of M tend to make the iteration (3.20) similar to the classica steepest descent method applied to

the function F(x). Unless x® isadationary point of F(x), value of mM* can be calculated from the

required Inequality 3.18. Asaresult, afamous hybrid agorithm (as example, MINPACK) for nonlinear
equations very similar to the Levenberg/Marquardt method has been created. The most important benefit
of this approach isthat it does not require explicit expressions for the derivatives, instead it uses the

successive valuesof T, (x*)(i =1,2,...,n;k =1,2,...) to build up anumerical approximation to the
Jacobian matrix by the technique presented in the Broyden method (see below). Revising the Jacobian
gpproximation by this method requires only n2 computer operations for each iteration. However if full

Newton-Raphson correction istoo large, the displacement from X(k) is based toward the steepest descent
direction of F(x). Thisis the important feature of the Levenberg/Marquardt iteration. It is possible to find

that under very mild conditions the F(x) becomes very small because X" isdoseto a dationary point of
F(x). The famous MINPACK1 is based on hybrid agorithm. Rabinowitz (1970) presented a detailed
description of the solutions.

The following are the main Powell’ s results.

To begin k-th iteration requires step-length [)k and two numbers. E and M and solving results of X. The
step-length can be changed at each iteration, and its purpose is to restrict the length of the displacement
(Xk”- Xk) in away that the iteration decreases the value of F(x). By decreasing F(x) substantially the

value of Dk iskept large. Fixed positive values are assigned to the numbers E and M before the

iterations start. These multipliers govern the conditions for finishing the iterative process. It stops if F(x)
is reduced to lessthan E, or dternatively if the gradient of F(x) is so smal that the distance from x to a
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solution is predicted to exceed M. Therefore E is set to a small enough vaue, in order the condition

n

a [ of <&
- (3.23)

impliesthat x is close to asolution of nonlinear equations. Matrix M is usually set to an over-estimate of
the distance from X" to the solution, in order that other stopping condition is obtained only when x is close
to agtationary point of F(x). The k-th iteration calculates the elements of Jacobian matrix at X“. Thenit

evaluates both the full Newton-Raphson correction d “and dso the gradient gk of F(x) at X~ Findly, it
tries to test the following inequality

F(x)e Mg,
(3.24)

If thisinequality is satisfied the iterations are completed since it is likelihood that the sequence of estimates
X is converging not to a solution of the equations, but to aloca minimum of F(x).

Theorem 1. If the elements of the Jacobian matrices Ji(jk) are bounded and F(x ") isfinite, than

either the iterative process is completed, because one of the conditions (3.23) or (3.24) are
satisfied, or the successive estimates X®, x® ... converged to a point X" .

Theorem 2. If the function f i (X) has continuous bounded first derivatives, and Powel’s

algorithmis applied to solve the system of nonlinear equation F(x)=0, the algorithm converges
after a finite number of iterations, due to either one of the conditions (3.23) or (3.24) being
satisfied.

Although Theorem 2 is satisfied when exact expressions for the elements of the Jacobian matrix are
available, agenerdization is possible when the elements of the Jacobian matrix are approximated
numericaly.

Theorems 1 and 2 indicate that hybrid algorithm may fail only because the functions f. (X),i =1,2....,n,

do not have bounded continuous first derivatives, or because of computer rounding errors. However, this
process may terminate if the length of the predicted gradient of F(x) is less than F(x)/M, and this fact will
not be acceptable to some practical cases. Because the algorithm makes frequent use of the Euclidean
lengths of vectors, it isimportant to choose the scale of the components of x so their magnitudes are
smilar. Thisisareal deficiency, so it would be useful to include some automatic scaling. However the
problem is a difficult one, because, if the equations are linear, the natural change of variables causes the
surfaces F(x)=0 constant to be spherical, in which case the Newton-Raphson correction of Equation 3.20
is aong the steepest descent vector of F(x). There isadanger that too much automatic scaling would
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cause the hybrid method to degenerate into iteration. The radica solution of this problem is the use of
affine invariant Newton’s methods.

3.2.3 Broyden’s method

The second type of methods, aso known as quasi-Newton's methods, does not require solving the
Jacobian. They construct their own approximeation to the true Jacobian updating at each iteration so that it
mimics the behavior of the true Jacobian over the step just taken. The gpproximate Jacobian is then used
to compute the new search direction. In order to formalize this idea let the Jacobian approximation at
iteration k be denoted be Bk . Assuming that Bx is nonsingular, define the step to the next iteration by

P, = - B F(X): Xks = Xe + Py
(3.25)

Let S« and Y, denote the differences between successive iterates and successive functions, respectively:

Sc = X1 Xk yk = F(Xk+l)- F(Xk)
(3.26)

According to the Taylor'stheorem, S and Y, arerelated by the expression

1

Y, = O (x +ts) s dt» Iy s + 0l )) (327)

The updated Jacobian approximation B,,, isrequired to satisfy
Y = Bre1Sk (329)

This secant condition ensuresthat B,.,, and J(x,,) are behave similarly aong the direction s, .
However, it doesn’t say anything about how B, ,, should behave aong directions orthogond to g, . In

fact, Equation 3.28 can be viewed as a system of n equationsin n2 unknowns (the unknowns are the
componentsof B, ,, ). Inthe scalar case n=1, Equation 3.28 defines B, ,, uniquely presents the well-

known secant method. Otherwise, there is a subspace of matrixes B,,, of dimension n(n-1) that satisfies

Equation 3.28. The most successful practical algorithm is Broyden's method, for which the update
formulais

(y ~ Bk Sk)S:
Bn=Bt— (329)
Sk Sk

The Broyden’ s update makes the smallest possible change to the Jacobian consistent with Equation 3.28.
The following lemma proves this claim.
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Lemma 1. Letthe matrix norms||.]| and |||.||| be such that for any N* N matrices B and C and any
n-vector s, the following is true

[BCI£|Bficl]

and
S sT

ls9)

Among all matrices B satisfying B S« = Y, , the matrix Bi-.1 defined by (3.29) minimizes
8- B4

=1

The conditions of Lemma 1 is true when ||.|| and |||.]|| are both the Euclidean norm, and aso when ||.|| is the
Frobenius norm and |||.]|| is the Euclidean norm. Under certain assumptions Broyden’s method converges
superlinearly, that is

b xl1= ol <) eEY

This asymptotic rate is fast enough for most practical purposes, though not as fast as Newton’s method,
which converges quadratically under smilar conditions. It is possible to state formal local convergence
results for Newton’s method and Broyden’ s method.

Theorem 3. Suppose that F is continuously differentiable in an open convex set D I Rn.

Suppose that there are an X* I D and positive scalarsr and & such that F( x* )=0, J (X*) is

1 . . )
J (x*) H£ b, B(x J)' D, and J(x) is Lipshitz continuous on B(X ,r) with

nonsingular with

Lipshitz constant L. Then there exist &> 0 such that if |x,~ x H £ e, the Newton sequence
generated by (3.25) is well defined, convergent to x* , and satisfies the following inequality

2

* *
Xicr” xH£ b'—ka‘ X

Roots for which J(x ) is singular are sometimes called degenerate roots. They do not satisfy the
conditions of Theorem 3 and quadratic convergence cannot be expected.
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3.2.4 Merit functions: nonlinear equations as optimal problem

Neither Newton's method not Broyden's method in their pure forms can guarantee to converging to a
solution of F(x)=0 unless they are starting near solution. Sometimes the components of the function or
Jacobian will blow up, or iterates will erratically through regions far from solutions. Eventuadly, an iterate
might stray near enough to aroot that convergence follows.

Another, more exotic kind of behavior is the cycling, where iterates move between distinct regions of the
parameter space without approaching aroot. What is necessary is away to measure the “goodness’ or
“merit” of each point, so that we can decide whether a step is taking us to a better point or whether it
needs to be modified. The most widely used merit function for nonlinear equations is the 2-norm ||F(x)||
and the closdly related sum-of-squares.

18 o
SaF (X) (3.31)

r(x)=
Solutions of the nonlinear equations problem F(x)= 0 obvioudy have ||F(x)||=0 and therefore are local
minima of these merit functions. Conversely, local minima of ||F|| are not necessary solutions of F(x)=0,
but the strategy of seeking local minima of r is often used, since it has proved to be successful in practice.

In order to extend the convergence domain of the Newton method, some globalizations are in common
use, e.g. damped Newton methods, steepest descent methods, and Levenberg-Marquadt methods. Based
on the latter techniques, some state-of -the-art software has been developed, e.g. the codes from IMSL,
NAG, and MINPACK. In contrast to this, the codes presented here are based on the affine invariant
damped Newton techniques according to Novak (1991).

The usual local Newton techniques, within these algorithms, are combined with a special damping strategy
in order to create globally convergent Newton schemes. One essentia property of these algorithmsis their
affine invariance.

3.2.5 Global affineinvariant Newton’stechnique

The short description of the invariant Newton’s technique (Novak 1991) is presented below. The detailed
description can be found in the publication by Hohmann (1993). The purpose of this technique isto solve
asystem of n nonlinear equations with n unknowns:

f l(Xl’...,Xn) =0

: : (3.32)
f n(Xl,..., x) =0

or, in the short notation

F(x)=0 (333

Where
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F: D® R
Where

X=(X11--'1Xn) I DI R

Usudly, some a priori information about the solution point x* of Equation 3.33 isavailable in form of initia

guess x, . Besdes the nonlinearity of F and the dimension n of the system, the quality of this information

will strongly affect the computational complexity of solving Equation 3.33 numericdly. It isone of the
shortcomings of the method from the practical engineering point of view. When computer time was
unavailable or very expensive, human analysis how to calculate manually a starting point for a computer
implemented iterative method made good economic sense. With computer power widely available and
relatively cheap, computer timeis far cheaper than the time required for human analysis. In effect, the
intent is to transfer intelligence from the user to the numerical agorithm. For this reason Newton method
can not be used alonein practical applications.

Taking Equation 3.33 into account, the complete problem formulation may be written as
Fx)=0, XI R
And x, asagiveninitia guess. (3.34)

Firgt, consider the ordinary Newton method for problem Equation 3.34. Let the following equation

evt, T¢ U
e U
eﬂxl 1T)(nl;
J(X):=F'(x) =g H (335)
ef, T
) g
éﬂX1 ﬂanj

denote the Jacobian (n,n)- matriX, assumed to be nonsingular for al xI D. Then, for agiven starting point
xo! D, the ordinary Newton iteration reads

k=0,1,2,....

a) J(x)Dx, =~ Fx)
X kel = X« + DXk

(3.36)

D x. : ordinary Newton correction.
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This method is known to be quadratic convergence near the solution x* , i.e. only afew iteration steps are
necessary to generate a highly accurate numerical solution for Equation 3.34. However, the scheme
described by Equations 3.36 is only locally convergent, i.e. theinitid guess x, must be close enough to the

solution x* . To achieve convergence aso for a“poor” initial guesses x, , one may globalize Equations

3.36 by introducing a damping parameter € . With that in mined, Equation 3.36 is extended to a damped
Newton iteration k=0,1,2,....

b) J(xJ)Dx. =" F(x)

X k+1:Xk+| kDXk

(3.37)

| - dampingfactor (O< |, <1)
Indeed, in order to create an efficient and robust method for solving Equations 3.37, this iteration must be
combined with an adaptive step length control. Within such a procedure the dumping factors | , should

be chosen in such away, that the iterations x, approach successively and fast the solution x . If the
“true” convergence criterion

_ * < _ * l *
Xk+1 X Xk X Xk X
(3.39)

and the associated stopping criterion

ka+1' X “ £ tol

(3.39)

are computationally not available, substitute approach criteria must be introduced. Usually, such criteria
are based on the definition of a so-called leve function (test function). A widely used level function is

given by
T(x) :=%HF(X)H2 = % F(x F(X) (340)

Inequalities 3.38 and 3.39 may be substituted by

[T(x..) £tol (342)

The main objection to this type of criteriais that the checks of conditions 3.41 and 3.42 are made in the
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“wrong” space, namely in the space of the residuas. Instead of this, the approach and the quality of
iterations yx, should be checked in the space of the solution x . This requirement is also a consequence of
the affine invariance principle, which is the leading theoretical concept of the Newton techniques.

Affineinvariance. Let'sintroduce variable A that denote an arbitrary nonsingular (n,n) -matrix, i.e. let
Al GL(n). Under this condition Equation 3.33 is equivaent to any problem described as

AFX)=0 (3.43)
In other words, Equation 3.33 is invariant under the affine transformation

F® G:=AF, Al GL(n) (3.44)

Equivaently, Equation 3.33 is the affine invariant. This property is shared by the ordinary Newton method.
Application of method described by Equations 3.36 to the transformed problem described in Equation 3.44
yields corrections

DX(Ij =-G (Xk)-lG(Xk) = F'(xk)-1 AlAF (x) =-J (xk)_1 F(x) = DXE (345)

Hence, starting with the sameinitial guess X5 = Xo , an identical iteration sequence
{Xf}k:012 ={ XI':}k:O:Lz is generated. Consequently, for a damped Newton method of type described

under condition 3.37 the affine invariance property of Equation 3.34 should carry over. Thus, an adaptive
step length control agorithm for condition 3.37 must be formulated in terms of affine invariant quantities
including affine invariant subgtitute criteria for Inequalities 3.41 and 3.42.

Damping strategy. The above mentioned outstanding choice B = \];(l, aswell asthe sdlection of an

associated optimal damping factor | , for condition 3.37 is based on a substartial theoretical study. In

order to characterize the nonlinearity of the problem, one may introduce an affine invariant Jacobian
Lipschitz constant W. Assume that a global constant W exist such that

HJ(y)'l[J(y)- J(X)]H Ewy- ¥

A (3.46)
Xyl D,w<¥
Then, with the convenient notation
he = |Dxd - W, hy == hycond (BJ () (347)

following inequality holds
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a) T(Xc+I1Dx|B)£ti(l [B)T(x|B) (3.48)
b) t(l|B)=1-1 +%| “hi

The result shown in Expressions 3.48 implies, that maximizing the descent means minimizing t, (I | B).
Strai ghtforward caquIati ons leads to the optimal choice

Iy (B)= mm1 (3.49)
il

Bopt J (Xk) 1

with the extreme properties (B 1 GL(n))
a)t(l [ID £t |B)

@ 50)

b, (Jk)3 7 (B)

Insertion into (3.47) and (3.49) respectively yields a priory estimate for the damping factor Newton path.
If the Newton path (from x, to x ) does not exist, the damped Newton iteration will, in generd, fail to

converge. This situation occurs, if the solution point X* and theinitid guess x, are separated by a
manifold with singular Jacobian. Typically, this case may arise in problems, where multiple solution points
exist. In practica applications, however, different solution points x usually have a distinct physical

interpretation. In any case, for the case of the fail of the damping method we need a method to crossover
of the singular Jacobian manifold. One of such methods is the tensor method. Another solution is aways to
have a good initia approximation. It is a possibility of using the method discussed together with the
homotopy method.

Basic algorithmic scheme. The following informal algorithm shows the basic structure of a damped
affine invariant Newton iteration (including step length strategy) due to (Novak 1991). Essentidly, this
scheme consist of the outer Newton iteration loop and an inner step length reduction loop. This a posteriori
loop is part of the outer loop and may be performed repeatedly. The Newton step comprises control of
convergence and check for termination, as well as a priori estimate for the damping factor & Within the
step length reduction loop just arefined (a posteriori) damping factor is selected and the convergence of
the associated refined Newton iterate is checked again.

Input:

Xo initial guess,

tol required accuracy,

| , initial damping factor,

minima permitted damping factor,

I min
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itmax maximum permitted number of iterations,

user routine to evaluate the nonlinear system function F(x),
: : fiF

user routine to evaluate the Jacobian of the system J(X):= o

standard routines for direct solution of linear equations.
Start:
k:=0
Evaluate system
Fe~ F (Xk)

Newton step: evaluate Jacobian
J= J (Xk)
compute ordinary Newton correction
-1
Dy =" J¢ Fu
compute a priory-damping factor

wm>m|ﬂ=mmljﬁ

h
where
(5] Io% Dxllox]
[Pxcdlpxd
ese | (ko)::| o
j=0
L=mad ) )

aposteriori loop computes following tria iterations
XK= X+ 1 DX,

evaluate system
FiL = F ()

compute smplified Newton correction
DXlat=- J'Fi

terminate check
exit =(|Dx{.1| £ tol U|Px,| £-/01 0 U1 =1)
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if exit: Xout-— XE+1+ D)_(Eﬂ

solution exit.
Compute a posteriori-damping factor

i+l l 1 P

I =MLy
k

where
= 2[P%- - 1]
! [P

monotonicity check

conv:= ||D7(kj+)]j £|Dx
if conv : DX := DXY)

Xics1 == Xy

)

Frir™ Fra

I = I
ki=k+1
if(koitma):fail exit

proceed at Newton step

dse j=+1
it (I =) _): fail et
-1 oo o
| =min}, Y
,I\I k 2%

I = max{l N mm}
proceed at a posteriori loop.
In order to perform one Newton step with this scheme, the essertia computationa work turns out to be:
one evauation of J(x), one evauation of F(x) and the solution of two linear systems - aslong asno a

posteriori step length reduction is necessary.  In such a case, each reduction step requires additionally one
evaluation of F and one linear system solution, but this device is activated quite rarely.

Convergence Criteria. Theinsght into the behavior of the damped Newton algorithm can be given by
the next theoretical consideration. Let us introduce the generalized level sets
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G(x|B) ={xI R"|T(x|B)£T(x(|B) (351)
and write the monotonicity criteriafor iteration as
Xl G(Xc|B) (352)

Aslong as B is not yet specified, a generalized, but natural requirement for an iterative method is that the
next iteration X1 descends for all possible choices BT GL(n) . Symibalically:

Xk+1T 6(Xk)
G(x)= BiQL(cna)(xkl B)

Under certain assumptions, the intersection C_5(xk) exists and turns out to be atopological path

X:[0,2] ® R", the so called Newton path, which satisfies
F(x(s))= @- 9F(x)
T(X(s) |B) = (1- s)*T(xc|B)

a)

b) ds (353)

) —hwo="J(x)" Fx)° Dx

The constructed Newton path X is outstanding in the respect that all level functions T(x|B) decrease along
X . Geometrically the damped Newton step in X« continues along the tangent of the Newton path G (Xk)
with an appropriate length and at the next iterate X«+1, the next Newton path G (Xk+1) will be chosen for
orientation towards X . These considerations show the limit of the affine invariant Newton techniques. If
the Newton path from X t0 X does not exist, the damped Newton iteration will, in general, fail to

converge. This situation occurs, if the solution point X and the initial guess Xo are separated by the

manifold with singular Jacobian.
Typicaly, this case may arise in problems, where multiple solution points exist.

Theorem 4. Let F:D1 X ® X pe a continuously Frechet-differentiable mapping, such that
F'(x) is continuously invertible for all X X. Moreover, itisrequired for F' to meet the following
affine i nvariant Lipschitz condition

[F ) ety ) - FOay- 9] & wly-
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for all x,yl D,t1 [01] and some t>0. If theinitial guess Xo satisfies

WD x| =WF" (xo) *F ()| < 2

and the Newton iteration Xk staysin the domain D, then the iteration converges to a solution x of
F(x)=0. The convergence is quadratic in the sense that

[Dxc £ Clloxdf

for some constant C > 0.

Conclusion. The method discussed above is a computationally very effective for good initiad guess.
For practical applications this method must be used with numerical approach giving a good initid guess to
the solution.

3.2.6 Tensor methods

Tenzor methods (Schnabel 1984) are a class of general-purpose methods for solving systems of nonlinear
equations. They are especidly intended to solve problems where Jacobian matrix is singular or poorly
conditioned, while remaining at least as efficient as standard methods on nonsingular problems. Their
distinguishing festure that they base each iteration on the smple second order term. Thisterm alowsiit to
interpolate more nonlinear function then standard linear model based methods without significantly
increasing the cost of forming, storing or solving the model. There are two types of tensor methods,
derivative that calculate an anaytic or finite difference Jacobian at each iteration, and secant that avoid
Jacobian evaluations. Both are require no more storage or arithmetic operations per iteration than
standard linear model based methods. The attention to this approach growing after incorporating in the
work (Bouricha 1992).

The main god of tensor methods is to provide general purpose methods that have rapid convergence even
when F(x) is singular. In addition, the methods should not experience any specid difficulty when J. is

singular or ill conditioned.

Tensor methods are based on expanding the linear model of F(x) around X to the quadratic model.
_ 1
M+ (x + d) =F(x) + 5, d +7,dd (354)

Where T.I R"""and J.is F'(x.) or asecant approximation to it. The three-dimensional object
T often isreferred to as a tensor. The tensor term is selected so that the mode! interpolates a very small
number, p, of function values from previousiterations. Thisresultsin T . being arank p tensor, which is

crucid to the efficiency of the tensor method. After the model described by the Expression 3.54 is formed,
the problem
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findd1 R"that minimizes Hl\n(xc+d) (355)

2

is solved; that is, at each iteration of tensor methods, a minimizer of the model is used if no root exist.

The tensor method requires no more derivative or function information per iteration than Newton's method,
and its storage requirement and arithmetic cost per iteration are not appreciably more than for Newton's
method. Bouricha (1992) shows that methods based on Expression 3.54 have good theoretical properties
and good computational performance. Theoretically, tensor methods converge at least as quickly as
Newton's method on nonsingular problems and have been shown to have 3-step Q-order 1.5 convergence
on problems where the Jacobian has rank n-1 at the solution, whereas Newton's method is linearly
convergent with constant 1/2 on such problems. The improvement by the tensor method over the standard
method is substantia, averaging about 19% in iterations and 41% in function evaluations on problems
solved successfully by both methods (Bouaricha 1992). Furthermore, the tensor method solves a
considerable number of problems that the standard method does not, and the reverse virtualy never isthe
case. The most difficult and expensive part of the tensor method is solving the quadratic model

(Expression 3.54) efficiently.

Derivative tensor methods

Forming the tensor model. Thefirst step in deriving a method based on Expression 3.54 is to choose
the second order term T . The second order term constructed by asking the model to interpolate

additional values of the function F(x) that have aready been computed by the agorithm. In particular,
model asked to satisfy

, 1
Flx) =Fl)*F () st o Teaar k=12 p (3.56)

Where
e~ Xk~ XeoK=12,...p, and ;.- x, aresome set of p past iterates that need not be consecutive.

For the Equations 3.56 to be consistent, the past points { X« must be selected so that the set of directions
{sd islinearly independent. In fact afar more restrictive condition enforced. Matrix X ;aways

predetermined to the most recent iterate. Each remaining past iterate included in the set of pointsto be
interpolated if the step from it to X.. makes an angle of at least & degrees with the subspace spanned be

the steps to the already selected more recent iterates. Here eis some fixed angle between 20 and 45
degrees. In addition, at most «/ﬁ past iterates are considered. This procedure for selecting past iterates

to interpolate isimplemented easily using a modified Gram - Schmidt algorithm, and requires about n2
multiplication and additions.

Equations3.56 areasetof n p £ nl'5 linear equationsin the n3 unknowns comprising T.. Thus T is
undetermined, following the standard practice in secant methods for nonlinear equations and optimization,
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choose T to be the solution to
min [T,

(357)

T R
subjecttoT e e =t.x =2(F(x.«)- F(X ) - F'(x.)ew k=12..,p,

Once the tensor Modd 3.56 is formed, aroot of the tensor model isfound. It is possible that no root exists;
in this case aleast squares solution of the model isfound instead. Schnabel and Frank (1984) show that
the solution to Expression 3.57 can be reduced to the solution of q quadratic equations with p unknowns
plus the solution of n-q linear equations with n-p unknowns. In the case the main steps of the agorithm
used to solve Expression 3.57 are follow:

1 An orthogonal transformation of the variable space is used to cause the n equations with n
unknowns to be linear in n-p variables, le Rn_ P and quadratic only in the remaining p variables,
1 p
d.! R
2. An orthogona transformation of the equations is used to eliminate the n-p transformed linear

variables from n-q of the equations. The result is a system of q quadratic equations in the p
unknowns, d, , plus a system of n-q equationsin al the variablesthat is linear in n-p

unknowns d, .

3. A nonlinear unconstrained optimization software package is used to minimize the |, norm of theq
quadratic equations with p unknowns ¢, .

4, The system of n-q linear equations that is linear in the remaining n-p unknowns is solved for ¢,

An advantage of this algorithm is that it efficiently and stable solves (3.56), whether or not the
tensor model has aroot or the Jacobian isnonsingular. Thetotal cost of the above agorithm isthe

O( ns) cost of Newton's method plus at most an additiona cost of O( nz's) arithmetic operations .

An iteration of the tensor method is summarized in the agorithm below. For more details on tensor
methods see Bouricha (1992).

Algorithm of theiteration of the tensor method for dense nonlinear eguations.
Presenting n, current iterate:x» F(x,)

1. Celculate F(x.) and check if it is permissible to stop. If not, follow to the next step.

2. Select the past points to use in the tensor model from among the «/ﬁ most recent points.
3. Calculate the second-order term of the tensor model, T .., so that the tensor model interpolates F(x) at
al  the points selected in Step 2.
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4. Find the root of the tensor mode!, or its minimizer (in the |, norm) if it has no rea root.

5. Select the next iterate x using either aline search global strategy or atwo-dimensiond trust region
method.

6. Set x.- % F(x)- F(X); returnto step 1.

The procedure for solving the tensor model in the dense case, however, does not adapt to large sparse
problems. The first step of this process, the orthogonal transformation of the variable space, is crucia to
this approach.

Methods for approximation the Jacobian. For the mgority of the practical problemsit is not possible
to express the Jacobian explicitly, and in these cases it is necessary to use an approximation B to the
Jacobian. The most obvious one can be obtained by using a forward-difference formula to approximate the
partia derivative.

Two possihilities for dealing with this Situation include the use of automatic differentiation and numerical
approximation of the Jacobian by finite differences. Automatic differentiation has the advantage of
producing exact derivatives, which can be essential to the convergence of Newton’s method in some
situations. The practicality of automatic differentiation tools has been demonstrated on a wide range of
applications. They can till require a certain amount of user intervention and can be unwieldy. For this
reason we decided to use the second aternative, approximation of the Jacobian by finite differences.
Solving the tensor model when the Jacobian is sparse.

Implementation of tensor methods for sparse nonlinear equations. The main invention of
Bouricha

(1992) to the tensor methods devel opment is the construction of an efficient algorithm for finding a root of
the tensor model when Jacobian matrix islarge and sparse. That is:

Find dT R" such that

2

My, +d)= F(x) +F'(x)d +%élak{dek} ~0 3589

where F " ( C) islarge and sparse. Bouricha reduced solution of this equation to the solution of a
system of p quadratic equations with p unknowns, plus the solution of p+1 systems of linear equations that
al involve the same matrix. This matrix is either J x.), if it is nonsingular and well conditioned, or X x..)

augmented by p dense rows and columnsif J( x.) is singular or ill-conditioned. Bouricha's (1992) results
are presented below. The algorithm based on the solution of the generalization of Expression 3.54

Fing dT " that minimizes m (x +al)

(359)

2

Let’ s the Jacobian matrix is nonsingular and the tensor model has aroot. Multiplying Expression 3.59 by
S.T J Li=1.., P givesthe p quadratic equations in the p unknowns b, = ST d,
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2

ak)bk:O,i =1,...,p (3.60)

s—TJ'lF+bi+%§(st'l

k=1

These equations can be solved for b, i =1,..., P, and then from (3.58) the equation

Frdd+18 o b =0
245 K
(3.61)

can be solved for d. The entire process required the solution of p+1 systems of linear equations in the
matrix J to compute J "'F and J_lak k=1,...,p. and the solution of the small system of quadratics (3.61).

Solving the spar se tensor model when Jacobian isnonsingular. Thistask handled by considering
the equivaent minimization problem to Equation 3.58,

min ||QM (x, +d)] | (362)

d R

where Qisan N" Northogona matrix that has the structure

L oTe
u
Q:gUT@
ez 0
with

1/2
~ np ., _ T -1 - .
Ulr U=3 SIST(JTJ) SJ ,San (n” p) matrix
whose columns areg ,,i =1,...,p
Z1 R”' “Pis an orthonorma | basis for the orthogonal complement of the subspace
spanned by the columns of 'S,

Bouricha presents the following agorithm for the sparse tensor model solution when Jis nonsingular:
Let JT R "besparse, F1 g',S,AT R'°

1. Form the (&) Equations (3.62) by calculating JT S asfollows: factor Jand solve
JT yi = S; ,i :l..., p.

o . Lo
2. Form the positive definite matrix WT R °, where Wi =%15|.T (JTJ) sjg,lf i, ] £p, asfollows
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Wij:(J_TSi)T(J-TSi):yiT Yi

3. Perform Cholesky’s decomposition of W (i.e. W=L |_T ) resulting in LT Rp’ P , alower triangular
matrix.
4. Use an unconstrained minimization software package, to solve

2

L q(b)

min
bl R® 2

or to solve this equation in closed form if p=1.
5. Subgtitute the values of &and q(8) into

o 1 2.7 -1 o]
d=- ] $9F+§Ab - 37 sy hab)2
e 1]
to obtain the tensor step d. This involves one additiona solution, since the factorization of Jis already
calculated.
The total cost of this processis the factorization of the sparse matrix J, p+1 back solution using this

factorization, the unconstrained minimization of afunction of p variables, and some lower-order (O(n))
costs.

Solving the spar se tensor model when the Jacobian isrank deficient. If the Jacobian matrix is
rank deficient Bouricha shows that it is possible to solve the tensor model by building a calculation process
just described above. The basis of this approach is to transform the tensor model given in Expression 3.56
asfollows.

Algorithm. Solving the Sparse Tensor Model

np

Let 1 R""besparse, A,SI R

1. Form the matrix Ap, , where d is the step computed in the previous iteration, b= St d,and

D, =diag(b). Then construct the augmented matrix MT R(mp)’(n+ " asfollows
éJ Ap.u
M=ér D0 (369)
&s -la

2. Begin the factorization of M, pivoting in rows and columns n+1,...,n+p only if Jis (numericdly)
singular. If Jisnonsingular, perform agorithm for the nonsingular case on the tensor model (Expression
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3.58).

3. If Jissingular but M is nonsingular, than perform agorithm for nonsingular case on the tensor Model
1 2
M (x, *+d) = F(xc)+J(xc)d+5A{STd}, (364)

1 2
where F(x) = F(x)+J(x.)d +§ A{STd}

and I(x) =JI(x)+Ap, s , and any required value of theformx=3 D orx=73 ' b isfound by

solving the augmented system with Matrix 3.63 or the analogous transposed system for x. Then set
d=d +d.

4. If M issingular, use the singular Newton step calculated in the next section, instead of tensor step.

The arithmetic cost per iteration of this agorithm isthe cost of a sparse matrix factorization of the

4
Jacobian J or the augmented matrix M plus the costs for p+1 back solves plusthe O( p ) cost of using
minimization package for solving q(8) equations if p>1, plus some O(n) costs. Thus the main additional
cost in relation to Newton's method again is p additiona forward and back solves per iteration.

Solving the Newton model along with the sparse tensor model. If the Jacobian matrix Jis
nonsingular, then the calculation of the tensor step described above produces a sparse LU factorization of
J. In this case, the Newton step is smply found by performing one additiond pair of triangular matrix,
solves the system

X=-F
(3.65)

That is, since

T T
J=p, LU P,
(3.66)

where L1 Rn "is unit lower triangular matrix, and p,@d p, are row and column permutation matrices.
First solve

Ly=c
(3.67)

for y, wherey=U p; d andc=p,F. Thensolve

Uz=y
(3.68)

49



for z, wherez = pl d. Findly, d=p,Z. Otherwise the matrix Jis singular, so Equation 3.65 is either zero
or an infinite number of solutions. Therefore, it is necessary to solve the least squares problem

m'nn Jd+FH2
d R
(3.69)

The method that is possible to solve this problem is an extension of the method of Peters and Wilkinson
(1970) that was suggested by Bjorck and Duff (1980).

Implementation of tensor methods for sparse nonlinear equations. The globa strategy that is
used in this implementation is a standard line search, because of its greater smplicity and because the two-
dimensiona trust region method requires two additional matrix-vector multiplication involving the Jacobian
matrix.

Algorithm. Given current iterate x_, F(x,) .
1. Calculate J=F(x.) and check whether to stop. If not, follow to the next step:

2. Form the second-order term of the tensor model, T ., S0 that the tensor mode! interpolates F(x) at the

most recent past point (i.e., p=1).

3. Factorize J using the sparse matrix software package.

4. If Jhasfull rank, then perform algorithm for nonsingular Jacobian on the tensor model
o p 2

1
M(xc+d): F(x)+dd +Ea 18k dTSk , to compute the tensor step ¢, and go to Step 6. Else:

4.1 Augment J by adding p rows and columns as follows (in this implementation, p=1). In generd, column

k of A=ax, columnk of S=S,and p, = diag(s, d), where d is the step computed in the previous

iteration.

2J  Ap, u
u

e
M=8 ; (3.699)
A | g

&

4.2 Complete the factorization of the augmented matrix M as follows. Let r denote the rank of J.

4.2.1 Update the lower left rectangular p*r submatrix, and the upper right rectangular r*p submatrix of
the augmented matrix M, using the multipliers stored in the L factor of the LU factorization of J.

4.2.2 Factor the lower right square (n-r+p)(n-r+p) submatrix of the augmented Matrix 3.69a using the
sparse matrix software package.

4.2.3 Update the factorization of the entire augmented Matrix 3.69a by combining the LU factorization
of the submatrix in Step 4.2.2, the updated submatrices in Step 4.2.1, and the LU factorization of J
into one LU factorization of the augmented Matrix 3.69a

5. If Jwas singular but the augmented matrix M has full rank, then perform agorithm on the tensor

model
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_ 1,0, )
My, +d)= F(xc)+Jd+EA{S d} ,

where
_ 1 2 . T
F(x)=Fly )+ d +EA{STd} J=J+Ap, g,
And d is the step computed in the previous iteration, to compute the step d . Then set ¢, = d+d and go
to Step 6. Else:

5.1 Calculate the Newton step d,, from the LU factorization of J by Bjorck and Duff (1980) method to
Jd+F|,

find some solution to min
di R"

5.2 Select the next iterates x, using line search agorithm, where ¢, isthe search direction, and jump to
Step 7.

6. Select the next iterate x, using aline search global strategy as follows:

6.1 If x.*(,isacceptable, than establish x, = x. * d, and jump to Step 7. Else

6.2 Calculate the Newton step (,, from the LU factorization of J (or asin Step 5.1 if Jissingular). Then

calculate XT =x.t | d,, for some &0, using agorithm for quadratic backtracking line search. If the

tensor step is a descent direction, then calculate Xt+ =x.t | d, for some &0, using algorithm for
quadratic backtracking line search.

6.3 If HF(XZ,) >IIF (x| -then x .- .. else . - X
2 2

7. Set x.- x.'F(xJ)- F(x,). Retuntostep 1.

The sparse tensor code terminates successfully if the relative size of (x, - x.) islessthan macheps™®
or "F (x,)
last global step fails to locate a point lower than . in the line search global strategy, or the relative size of

is less than macheps®?; it terminates unsuccessfully if the iteration limit is exceeded.  If the

J (x+)T F (x+) islessthan machepsl’3, the method stops and reports this condition; this may indicate either
success or failure.

Conclusion. The tensor method more robust then damped Newton's.  The tensor method is a specia
case of the regularization operator approach. (Furi 1969, Tihonov 1986). Theoreticaly it is possible to find
situation where tensor method will be unsuccessful because the regularization operator used sometimes
can loose the compactification property. The detailed description of the methods for the ill-posed problems
solution and analysis of the regularization operator properties can be found in publication by Tihonov
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(1986). Method can be used by experienced users for solving practica problems but some probability
exists that method will fall. Inexperienced user needs more robust approach.

3.2.7 Methods based on homotopy

This method is very robust and capable of achieving globa convergence at high probability.

Globally conver gent homotopy methods. It was mentioned above that the Newton-based methods
suffer from amagjor shortcoming. They are not guaranteed to converge to a solution of F(x)=0 but only, at

best, aloca minimum of ||F(X)|| . There are algorithms for finding zeros or fixed points of nonlinear

systems of equations that are globally convergent for amost all starting points, i.e. with probability one.
The essence of al such algorithmsis that the construction of an appropriate homotopy map and then
tracking some smooth curve in the zero set of this homotopy map.

Homotopies are atraditiona part of topology, and have found significant application in nonlinear functional
analysis and differential geometry. The concepts of homotopy maps, continuation, incrementa loading, and
invariant imbedding are widely used and intertwined. Let Homotopy methods be the generic terms,
including continuation, parameter continuation, incremental loading, displacement incrementation, invariant
imbedding, and continuous Newton methods.

Parameter continuation is well established technique in numerica analyss, with the basic idea being to
solve a series of problems as some parameter is dowly varied, using alocaly convergent iterative
technique for each problem, and the solution of the previous problem as the starting point for the current
problem). Similar techniques in engineering are known as incrementa loading and displacement
incrementation. For the most part al these methods have rather restrictive hypotheses and the connection
with topology had not been made

A fundamental breakthrough occurred with the truly globally convergent smple fixed point agorithms.
These agorithms were grounded in topology, constructive, potentially extremely powerful, but horribly
inefficient in their early forms.

Another significant advantage was the differential equation formulation of continuation, proposed in
various forms by Rheinboldt (1982). Although the underlying homotopy map in these differential equation
forms may have been the same asin “classica” continuation, it is important to redize that the algorithms
and implementations are fundamental ly different. Despite considerable success on practical problems and
alarge amount of supporting theory, al these homotopy methods suffered from afatal flaw. A Jacobian
matrix somewhere could become singular, and the computer implementation would either experience great
difficulty or the method would fail completely.

The next advance was the development in 1976 by S.N.Chow (Chow 1978) of probability one homotopy
methods. The thorn of singular Jacobian matrices was finally removed, since these methods were
specifically constructed to not have any singular points. The phrase “probability one’ refers to the
supporting theory, which says that for almost al choices of some parameter vector involved into the
homotopy map, there are no singular points and the method is globally convergent. Again, while globaly
convergent probability one homotopy agorithms may have a superficia resemblance to earlier homotopy
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agorithms, it isimportant to note that the philosophy in fundamentally new. Furthermore, because of this
philosophical difference, there are subtle differences in mathematical software for probability one
homotopy agorithms from the other continuation methods.

Algorithmsfor dense Jacobian matrices. Let Ep denote p-dimensiond rea Euclidean space. The
following four lemmas from Watson (1985) are the basis for the homotopy agorithms.

Lemma2 Letg g’ ® " bea c map, al E”, and define r (04 E°® E”, by
r (Ly)=1g(y)+@- I)(y- a)

Then for almost all al Ep thereisa zero curve & of r , emanating from (0,a) along which the

Jacobian matrix Dy _(I',y) hasfull rank.

Lemma 3. If the zero curve & in Lemma 2 is bounded, it has an accumulation point (1,y) where
g(y)=0. Furthermore, if Dg(y) is nonsingular, then & has finite arc length.

Lemma4. Let F:g'® E" bea ¢ map such that for somer > 0, xF(x) 0O whenever |X| =T

Then F hasa zeroin {XT Ep|||X||£ F}, and for almostall ~ al Ep"a" T, thereisa zero curve @
of

r (LX) =1TF(X)+Q@Q-1)(x-a),

along which the Jacobian matrix D ¢ a(| ,X) has full rank, emanating from (0,4) and reaching a
zerox of F at &=1.

Furthermore, & hasfinite arc length if DF(x) is nonsingular. Lemma 4 is a specia case of the following
more genera lemma.

Lemmab. Let F: Ep® preacz map such that for somer > 0and rl > 0, F(x) and x-a do not

point in opposite directions for ||X|| =T, ||a|| <rl ThenF hasazeroin {XT Ep|||><“£ r}, and for

almost all al Ep,||6‘||<1r1,thereisazero curve & of
r (1) =1TF()+Q-1)(x-a)

along which the Jacobian matrix D r a(| ,X) has full rank, emanating from (0,&) and reaching a
zerox of F at é=1.
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Furthermore, & has finite arc length if DF(x) isnonsingular. The generd idea of the agorithm is apparent
from the Lemmas: just follow the zero curve & emanating from (O,W) until azero Y of F(Y) isreached (at
&=1). The homotopy map is

rw(l,Y) =1 F(Y)+(1- 1 )(Y- W) (3.70)

that has the same form as a standard continuation or embedding mapping. However, there are two crucial
differences. In standard continuation, the embedding parameter € increases monotonically from0to 1 as
the trivia problem Y-W=0 is continuoudy deformed to the problem F(Y)=0. The present homotopy
method permits & to both increase and decrease adong & with no adverse effect. This turning point
presents no specia difficulties. The second important difference is that there are no any “singular points’
that afflict standard continuation methods. The way aong which zero curve & of fiw is followed, and the

full rank of D r ,dong & guarantees this. According to Lemma2, & cannot just “stop” at an interior

point of [0,1] E°

The homotopy map r _ exists from (p+1)-dimensiona space to p-dimensiona space. This mismatch of

dimensonsis a double-edged sword since the extra dimension permits “lifting” the origina problem to
obtain a problem with no singularities and a full rank Jacobian matrix, and that can be solved from an
arbitrary starting point. However, the Jacobian matrix

Dr (.9=[p r,0. 9 p,r,0.%)] (371)

of r isrectangular (p(P+1)), and thisis an essential aspect of the lifted problem. By contrat, the

Hessian matrices (Rabinowitz 70)) in nonlinear optimization and the Jacobian matrices in localy

convergent algorithms for nonlinear systems of equations are aways square. The p(p+1) shape adds a

combinatorial aspect to the numerical linear algebra, and this subtle difference is important in computer

implementations.

The zero curve & of the homotopy map can be tracking by three primary agorithmic approaches:

1) an ODE-based dgorithm

2) apredictor corrector agorithm

3) averson of Rheinboldt’s linear predictor, quas-Newton corrector algorithm (an augmented Jacobian
matrix method).

ODE-based algorithm. The detailed description of this agorithm has been published by Watson
(1986). A short description is presented below.

Assuming that F(Y) is Czand W is such that Lemma 2 holds, the zero curve N is Cl and can be
parameterized by arclength s. Thus | =1 (S),Y =Y(s) dong dand

r (1(s),Y(s)=0 372
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identicaly in s. Therefore

&l 0
% r (1e.ve)=or (s),Y(s))g%TYE: 0 (3.73)
Iso
ol dv Q|
i
assuming &Y (0)=W

the zero curve i is the trgjectory of the initia value problem (3.72)-(3.73). When &(s)=1, the corresponding
Y (s) isazero of F(Y). Typica ODE software requires (d&/ds,dY/ds) explicitly. One of waysisto use
Algebraic Differential software (Petsold 1989). Another way, established by Watson (1986) , is
calculation (d&/ds,dY/ds) as a unit tangent vector to the zero curve i by finding a one-dimensiond kernd
of the p* (p+1) Jacobian matrix

Dy (1(9).Y(9)
that has full rank by Lemma 2. The crucial observation isthat the last p columnsof D ¢ ,,» corresponding
to p, r ,may not have rank p, and even if they do, some other p columns may be better conditioned. A

conceptually elegant agorithm is to compute the QR factorization with column interchangesof D "

where Q is a product of Householder reflections (Rabinowitz 70). The main defect isimpossihility of
using for sparse matrix calculations.

The descriptions of the agorithms developed by Watson (1986) are presented below for sparse matrixes,
and for dense matrices. For small problems (n < 200), it is possible to use the method developed for dense
matrices. A big number of practical applications can be handled using dense matrices tools.

Algorithm for dense matrices.

1 Sets=0y:=(0,a), ypold:=yp:=(1,0,...,0), restart:=fa se,error:=initia error tolerance for the ODE solver
(.

2. If Y,<0then moveto Step 23.
3. If s>some constant, then
4. S0
IR +(@- 1)x
5. Compute a new vector a from (& = 11 ) If

|newa - old &|| > 1+ constant * |[old &, then goto 23

6. ode error:=error.
if ||yp- ypold|, > (last arc lengthstep) * constant ,then

odeerror ;= tolerance << error.
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8. ypold:=yp
9. Take astep along the trgjectory of (5-7) with ODE solver, yp=y'(s) is computed for the ODE solver
by 10-12 .

10. Find avector z in the kernel of D 1 _ (YY) using Householder reflections.
11. If Z ypold <O,thenz:=-z

12. yp=2|4

13. If the ODE solver returns an error code, then go to Step 23.

14. 1f ¥, <0.99 thengoto2.

15. If restart=true, then go to 20.

16. restart:=true

17. error:=final accuracy desired.

18. If Y, % 1, then set (sy) back to the previous point (where Y, £1).

19. Goto Step 4.

20. If Y, <1 then go to Step 2.

21. Obtain the zero (at Y, =1) by interpolating mesh points used by the ODE solver.

22. Norma return.
23. Error return.

Algorithm for sparse matrix. The genera theory applies equally well here. Since the Jacobian matrix
has rank n along & the derivative (dx/ds,dl /ds) isuniquely determined by Equation 3.73 and
continuity, and the initiad value problem can be solved for x(s),&(s). The difficulty now isthat the first n
columns of the Jacobian matrix D (X, 1) are definitely special, and any attempt to treat all n+1
columns uniformly would be disastrous from the point of view of storage allocation. Watson used for the
Dr (X1 )=0 equation solution a preconditioned conjugate gradient method. The description of the
method is not presented here because later we will present a detailed review of the linear equations
solution methods. The only important detail is the choice of the preconditioning matrix Q. Watson takes

for Q the modified Cholesky decomposition of M. For sparse problems the logic of tracking the zero
curve ais exactly the same as for the dense Jacobian matrix.

The normal flow algorithm. Asthe homotopy parameter vector varies, the corresponding homotopy
zero curve a aso varies. Thisfamily of zero curves is known as the Davidenko flow (Rabinowitz 1970).
The normal-flow agorithm is so called because the iterates converge to the zero curve & along the flow
normd to the Davidenko flow. The norma flow agorithm has four phases: prediction, correction, step size
estimation, and computation of the solution at é=1.

Prediction phase. Assume that several points P* = (I (8),Y(s)), P? = (I (s,),Y(S2)) oni with
corresponding tangent vectors (d&/ds,dY /ds) have been found, and h is an estimate of the optima step to
take dong i. The prediction of the next point oniis

7°= p(s,+h) (3.74)

where p(s) is the Hermiite cubic interpolation (1 (9),Y(s)) at s,and s, .
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Corrector phase. Starting at the predicted point ZO , the corrector iteration is

Zn+1: 7n- [Drw(zn)]arw(zn)’n: 0,1’__ (375)
where [D rw(Z n)] ... is the Moore-Penrose pseudoinverse of the p* (p+1) Jacobian matrix D r "

Step size estimation phase. A corrector step DZ s the unique minimum norm solution of the equation

lD rWJDZ =-I'W. For dense problems the kernel of lDrWJ' is found by computing a QR factorization and

then by back substitution. By applying this QR factorization to fiw and using back substitution again, a
particular solution v for Equation 3.75 can be found. When the iteration of Equation 3.75 converges, the
fina iterate zn+1 is accepted as the next point on i. This approach can not be applied to the sparse
matrices.

Findly, the agorithm is following:

1. s=0,y:=(0,a), h:=0.1, firststep:=true, arcae, arcre:=absolute, relative error tolerances for tracking &,
ansae, ansre:= absolute, relative error tolerances for the answer.
If firststep=false then

Compute the predicted point Z° useinitialization procedure else

Compute the predicted point Z°us ng alinear predictor based on y=(0,a) and the tangent there.
Iterate with Equation 3.75 until either

|DZY| £ arcae + arcre|Z or

abh wbd

4 iterations have been performed.

If the Newton iteration did not converge in 4 steps, then
h:=h/2
If hisunreasonably small, then return en error flag.
Goto Step 2.
0 firststep:=fase.
11 If Y, <1, then compute a new step size h and go to Step 2.
12 Do Steps 13-18 some fixed number of times
13 Find ssuch that p(s)=1, using yold, ypold, y, yp in (17)
14 Do two iterations of step (18) starting with Z° = p(s), ending with z2.
15 If

22 4+ [Pz £ ansae+ ansefz]

2 O 00~NO

than return (solution has been found)
16 If Z3 Lthen

17 Y:=Z2% yp:=tangent at 7?2

57



Else:

18. yold:= Z?, ypold := tangent at z?

19. Return with an error flag.

The logic of the predictor, corrector, and step-size estimation phases of this algorithm isidentica to that
given in the dense case. Similar to the ordinary differentia equation based agorithm, the difference
between the dense and sparse Jacobian matrix casesis the low-level numerical linear algebra. The main

linear dgebra problem is the solution of Equation 3.75 using the same matrix splitting, preconditioning
matrix, and conjugate-gradient algorithm as for the sparse ordinary differential equation based agorithm.

Augmented Jacobian matrix algorithm. Augmented Jacobian matrix algorithm has been described
by Rheinboldt (1983). This agorithm has four mgjor phases. prediction, correction, step-size estimation,
and computation of the solution at &=1.

Prediction phase. The prediction phase is exactly the same as in the normal flow agorithm.

Correction phase. Starting with the predicted point Z° , the correction is performed by quasi-Newton
iteration defined by

k+l — —k _ ° gwa(zk)gk:c)l
2= gl & 7y Ek=0L (3.76)

where A isan approximation to the Jacobian matrix D r a(Zk). The last row of this matrix insures that

iterates lie in a hyperplane perpendicular to the tangent vector T>. Equation 3.76 is the quasi-Newton
iteration for solving the augmented nonlinear system

@& r(y) 0_
(y- 2%

A corrector step D Z* isthe uni que solution to the equation

eA U, _®r, (299
U - -
s 8 0

Step-size estimation. At each point P* with tangent T* along &, the curvature is estimated by the
formula

2 .
o] = a2

where
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kK _ —k-

=221 = aroodrorr-2) s [ -

This curvature data can be extrapolated to produce a prediction for the curvature for the next step
_ Dsi )

X = wi +Dsk+—Dsk.10W" -y}

As with the normal-flow agorithm, additiona refinements on the optimal step size are made in order to
prevent chattering and unreasonable values.

Computation of the solution at &=1. Thefina phase of the dgorithm for computation of the solution
at é=1 is entered when a point P? is generated such that Pi3 1. The agorithm for finding this solution is

a two-step process that is repeated until the solution is found. First, starting from apoint P aprediction
Z"? for the solution is generated such that Z* *=1. Second, a single quasi-Newton iteration is

performed to produce a new point P“"* closeto & but not necessarily on the hyperplane &1. The
altering process of computing a prediction and taking a quasi-Newton step is repeated until the solution is
found.

In summary, the dgorithmis:

1. s=0;; y:=(0,a); ypold:=(1,0); h:=0.1; failed:=fdse; firststep:=true; arcae, arcre:=absolute, relative error
tolerances for tracking & ansae, ansre=absolute, relative error tolerances for the answer.

Compute the tangent yp at y, and update the augmented Jacobian matrix.

If firststep=false then

Compuite the predicted point

Compute the predicted point  Z° using alinear predictor based on'y and yp.

If failed=true then

Compute the augmented Jacobian matrix at Z°.

Compute the next iterate Z*
Limit=2([- 100, (arcae + arcrd|y) ]+1). Repeat steps 10-11 until either
||Dzk|| £ arcae + arcre||zk||

or
limit iterations have been performed

10. Update the augmented Jacobian matrix.

11. Compute the next iteration

12. If the quasi-Newton iteration did not converge in limit steps, then

13. h:=h/2; faled:=true.

14. If hisunreasonably smal, then return with an error flag.

15. Goto Step 3.

16. Compute the tangent at the accepted iterate Z~ and update the augmented Jacobian matrix
17. Compute the angle a between the current and previous tangents

© 0O NN
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18. If &0/3, then

19. H:=h/2; failed:=true.

20. If hisunreasonably small, then return with an error flag.
21. Goto Step 3.

22. Yold:=y, ypold:=yp, y:=Z , yp:=tangent computed in step 16, firststep:=false, failed:=false.
23. If Y, <1, then compute a new step size h with
€nin = 0.0,

. = min] arcaesarcrey}* - yoid

and go to Step 3.

24. Find s such that p(s)=1, using yold, ypold, y and yp yopp:=yold, Z°=p(s).

25, Limit=2([-10g,,(arcae +arcrd|y) ]+1). Do steps 26-33 for k=2,.... limit+2.
26. Update the augmented Jacobian matrix

27. Take aquasi-Newton step.
28. If

[PE”- Y+ |oz* | £ ansae + ansrefz* ]
then return (solution has been found)

20, If [P 1| £ ansae + ansre,

Then
Zk 1= pkl

€else do steps 30-33.
30. yold:=y, y:= P***
31 If yold,and y, bracket | =1, then yopp:=yold.
32. Compute Z* with the linear predictor usng y and yold.
33 If ||Zk'l- y|| > ||y y0pp||,th€ﬂ compute Z“* with the linear predictor using y and yopp
34. Return with an error flag.

Augmented spar se Jacobian matrix algorithm. The augmented Jacobian matrix agorithm for

sparse Jacobian matrices differs from the dense algorithm in the following three respects:

1. Like the sparse normal flow and ODE-based agorithms, the low-level numerical linear agebrais
changed to take advantage of the sparsity of the problem.

2. Quasi-Newton iterations are abandoned in favor of pure Newton iterations;

3. Rhenboldt's step size contral isimplemented more faithfully because of the use of Newton iterations.

Except for these three changes, the logic for tracking the zero curve ais exactly the same as for the dense
agorithm.

Conclusions. The homotopy agorithm the most robust between the other algorithms.  The most useful

and effective the algorithm based on the augmented Jacobian, especialy with the new methods for
augmented matrices handling, developed in the last years.
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3.2.8 Solving linear equations

All the methods for solving nonlinear equations involve the solution of many sets of linear algebraic
equations. When the number of equations (n) becomes very large, it is clear that two difficulties can
occur: the computation time required may become too long and/or there may be not enough storage to
contain the matrices and factorizations required. Methods for the solution of the linear equations

AX=Db (3.77)

can be divided into two categories. direct methods where matrix A is transformed into a matrix that is
easly invertible, and iterative methods where matrix A is used directly to generate a sequence of vectors
which tend to the solution of equations.

Another type of methods is based on the division of the matrices by symmetric and asymmetric positive
definite and indefinite. The most effective methods in each of these categories will be described where A
is alarge sparse matrix, which is usud situation for network problems.

Direct methods. It isimportant to distinguish between two types of matrices:
o . 2 : . .
A stored matrix isone for which all n matrix elements g;; are stored in the computer memory. It isvery

important to use standard building blocks in application codes. They are extremely useful for smplifying
the design of codes while guaranteeing portability and efficiency. The building blocks for much of our
work, both in the solution of sparse systems, and in more complicated are as of constructing and solution
the network problems, are the Basic Linear Algebra Subprograms known as BLAS (Dongarra 1990).
For reasons of efficiency, we are going to use the higher level of BLAS, in particular, the LEVEL 3
BLAS that includes kernels like the matrix-matrix multiply routine. Later we will discuss the effect of
using BLAS in the solution of linear equations when the coefficient matrix is sparse.

A sparse matrix is one for which most of the matrix elements are zero, and nonzero elements can be
either stored in some specia data structure or regenerated as needed. The order of n is frequently as large
as several tens of thousands and occasionaly even larger. This type of matrices the more important for
network problems and will be discussed below. The significant benefit from sparsity does not come from
the cost reductions, but rather from the fact that problems that were hitherto infeasible can now be solved.
For network problems there was a near-linear relationship between the number of floating-point operations
and the number of unknowns in the sparse system of equations. Matrix sparsity and graph theory are
subjects that can be closely linked. The pattern of a square sparse matrix can be represented by a graph,
for example, and then the results from graph theory can be used to obtain sparse matrix results. Here we
will not discuss the computer architecture and its influence on the agorithms. We will be restricted to the
persona computers and will not touch the problems arising from the mainframe computer architecture.

Sparsity is useful not only in solving the equations efficiently, but also in reducing the number of function
evaluations necessary to estimate Jacobian matrix of the nonlinear system of equations. An agorithm due
to Curtis, Powel can accomplish this, and Reid who is discussed later (Rabinowitz 1970).

According to Duff: “I fedl strongly that the only way of solving really challenging linear agebra problems
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is by combining direct and iterative methods through either conventional or novel preconditioning” (Duff
1996).

Unifrontal methods. Inaunifrontal scheme the factorization proceeds as a sequence of partial
factorization and elimination on dense submatrices, caled frontal matrices. Although unifrontal methods
were originaly designed for the solution of finite-element problems, they can be used on assembled
systems. For assembled systems, the frontal matrices can be written as

a:ll F129

g H (3.78)
Fau Fxg

where all rows are fully summed (that is there are no further contributions to come to the rows in Matrix
3.78 and the first block column is fully summed. This means that pivots can be chosen from anywhere in
the first block column and, within these columns, numerica pivoting with arbitrary row interchanges can be
accommodated since al rows in the frontal matrix are fully summed. Let’s assume that without loss of

generality the pivots, chosen in the square matrix F,, of (3.78) F,,, are factorizes, and the Gaussian
elimination multipliers overwrite F ,, and the Schur complement

-1
Fo™ FaFuFi (3.79)

is formed using dense matrix kernels. The submatrix consisting of the rows and columns of the frontal
matrix from which pivots have not yet been selected is called the contribution block. In the case above,
thisis the same as the Schur complement matrix.

At the next stage, further rows from the original matrix are assembled with the Schur complement to form
another frontal matrix. The frontal matrix is extended in size, if necessary, to accommodate the incoming
rows. The overhead is low since each row assembled only once and there is never any assembly of two
(or more) frontal matrices. The entire sequence of frontal matrices is held in the same working array.
Data movement is limited to assembling rows of the original matrix into frontal matrix, and storing rows
and columns as they become pivota. There is never any need to move or assemble the Schur complement
into another working array. One important advantage of the method is that only this single working array
need reside in memory. Rows of A can be read sequentially from disk into the frontal matrix. Entriesin L
and U during LU decomposition of A can be written sequentially to disk in the order they are computed.

The unifrontal method works well for matrices with small profile, where the profile of amatrix isa
measure of how close the nonzero entries are to the diagonal and is given by the expression:

g1 o N

A imax (- Dtmax (- 1)y (3.80)
ile a0 a;'0 b

where it is assumed the diagonal is nonzero so al termsin the summation are non-negative. For matrices
that are symmetric or nearly so, the unifrontal method is typicaly preceded by an ordering method to
reduce the profile such as reverse Cuthill-McKee (RCM) (George 1973). Thisis typicaly faster than the
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sparsity-preserving orderings commonly used by a multi-frontal method (such as nested dissection and
minimum degree). However, for matrices with large profile, the frontal matrix can be large, and an
unacceptable amount of fill-in occurs. In particular, we lack effective profile reduction strategies for
matrices whose pattern is very asymmetric.

The unifrontal scheme can easily accommodate numerica pivoting. Because al rowsin Matrix 3.78 are
fully summed and regular pivoting can be performed, it is aways possible to choose pivots from al the
fully summed columns,

In amultifrontal method, the sparse factorization proceeds by a sequence of factorizations on small full
matrices, called frontal matrices. An important feature of these methods is that arithmetic is performed on
dense submatrices and Level 2 and Level 3 BLAS (matrix-vector and matrix-matrix kernels) can be used.
Both sparse LU and QR factorizations can be implemented within this framework. The ordering for the
sequence of computations and the frontal matrices are determined by a computational tree, called
assembly tree, where each node represents afull matrix factorization and each edge transfers data from
child to parent node. This assembly tree is determined from the sparsity pattern of the matrix and from a
reordering that reduces the fill-in during the numerical factorization (such as the minimum degree
ordering). During the numerical factorization, elimination at any node can proceed as soon as those at the
child nodes have completed and the resulting contributions from the children have been summed
(assembled) with the data at the parent node. Thisis the only synchronization that is required and means
that operations at nodes that are not ancestors or dependents are completely independent.

The development and production of sparse asymmetric solvers has now become a veritable growth
industry. The multi-frontal and super-noda techniques, so powerful in the symmetric case, have been
extended to asymmetric systems (Duff 1996).

The solution of a sparse matrix system is usudly divided into severa phases:
Andysis of the sparsity structure to determine a pivot ordering.

Symbolic factorization to generate a structure for the factors.

Numerical factorization.

Solution of set(s) of equations.

In some cases, particularly when it is important to consider numerical values when choosing pivots, the
first three phases are combined into an anayze-factorize phase. Additionaly, there may be some
partitioning scheme prior to al these phases, which are then executed on submatrices from the partition.
The relative speeds of the four phases are very dependent on the details of the algorithm and
implementation, the problem being solved, and the machine being used. However, one reason for
separating the first two phases from the third is that it is usually much faster to perform an analysis and
symbolic factorization without reference to numerical values. This does mean that there must be some
way of incorporating subsequent numerical pivoting in the factorization if genera problems are to be
solved. Mogt of the algorithms are based on matrix factorization methods like Gaussian elimination, and
part-way through the matrix factorization, when some of the factors are calculated, the remaining matrix is
composed of originad matrix entries and filled-in from the earlier stages. Let usrefer to this matrix as
reduced matrix.

Finally, the relationship between graphs and sparse matrices is ubiquitous in sparse matrix work. Using a
symmetric sparse matrix of order n, we associate a graph with n vertices, and an edge (1,j) between
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vertices| and j, if and only if entry g 1 0. A dliqueis acomplete subgraph, that is al vertices of the

subgraph are pairwise connected by edgesin the graph. Asymmetric matrix we associate with directed
graph where the edges are now directed. A bipartite graph is sometimes associated with an asymmetric
(even non-sguare) matrix. This has two sets of digoint vertices identified with rows and columns of the
matrix respectively. An edge (1,j) exist from the row vertices to the column vertices if and only if entry

aij 1 0. The eimination tree is defined by the Cholesky (George 1973) factors of a symmetric matrix and

has an edge (1)) if the first nonzero entry below the diagona in column j of the lower triangular Cholesky
factor isin row i.

Three principa problems with multi-frontal methods, as practiced in the 1980s, were that
there could be significant overheads for data movement,

they assumed structural symmetry, and

the analyzes phase assumed that any diagona entry could be chosen as pivot.

In the first case, continuing with one frontal matrix rather than stacking it and starting another can reduce
data movement. Taken to the extreme, this strategy would give a uni-frontal scheme. This technique was
incorporated in the HSL code MA38. Thisis clearly fine if the matrix is symmetric in structure but
surprisingly can perform quite well for asymmetric matrices. Although it can be inefficient when the
matrix is markedly asymmetric. For asymmetric systems, a preordering to place non-zeros on the diagonal
is often very helpful and isin option in the HSL code MA41. Davis and Duff (1993) have extended the
multifrontal scheme to general asymmetric matrices, using rectangular fronts and directed cyclic graphs.
This extension works well on most highly asymmetric systems but can be poorer then MA41 when the
matrix is not highly asymmetric.

The third problem is more difficult and is present for any technique that performs an analyze phase
separation from the numericd factorization. Clearly, one way to resolve thisis to combine the analyze and
factorize phases but then many of the benefits of the fast analyze phase are lost. A certain amount of
numerical or additiona structural information can be supplied to the analyze phase.

The other main approach to using higher order level BLAS in sparse direct solversis generdization of
sparse column factorization. These can either be left-looking (or farrin) agorithms, where updates are
performed on each column in turn by all the previous columns that contribute to it. Then the pivot is chosen
in that column and the multipliers caculated; or aright-looking (or fartout) algorithm where, as soon as the
pivot is selected and multipliers caculated, that column isimmediately used to update a future columns
that is modifies. Higher level BLAS can be used if columns with a common sparsity pattern are
considered together as a single block or super node and agorithms are termed column-super node, super
node-column, and super node-super node depending on whether target, source, or both are super nodes.

One of approaches for handling duct netsis the use of symmetrical matrices. Such symmetrical matrix is
presented below.

Ordering for symmetric problems. Although predated thirty years ago (Markowitz 1957), scheme S2
in the paper by Tinney and Walker (1967) established the main ordering for symmetric problems that has
remained aimost unchalenged until this present day. Scheme S2 is commonly termed the minimum degree
ordering because, a each stage, the pivot chosen corresponds to a node of minimum degree in the
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undirected graph associated with the reduced matrix. In matrix terms, this corresponds to choosing the
entry from the diagona that has the least number of entriesin rows within the reduced matrix. This
ordering algorithm has proved remarkably resistance and, although based only on locd criterion, does an
excellent job of keeping subsequent work and fill-in over awide range of problems. George and Liu
(1989) study the evolution of the minimum degree ordering.

George (1973), in his later paper, proposed a different class of ordering based on anon-local strategy of
dissection. In his nested dissection approach, a set of nodes is selected to partition the graph, and this set
is placed at the end of the pivotal sequence. The subgraphs corresponding to the partitions are themselves
smilarly partitioned and this process is nested with pivots being identified in reverse order. Minimum
degree, nested dissection, and severa other symmetric orderings were included in the SPARSPAK
package. Empirical experience at the beginning of the 90s indicated that minimum degree was the best
ordering method for genera or unstructured problems which is the class of problems under our application.

Although the minimum degree ordering is Smple enough to describe, it is not quite so smple to implement
efficiently. There are three main issues:

select apivot,

update a reduced matrix after selection of a pivot, and

update the degree counts.

For the firgt, it is easy to keep alist of nodesin order of increasing degree and to choose the node at the
head of that list each time. There are two ways in which this task can be made significantly more
efficient. The first isto observe that, once a node is selected, al nodes that were in a complete subgraph
(or clique) containing this node, have one degree less and so can immediately be eliminated without any
extrafill-in, and subsequently, al the nodesin the clique can be iminated. Thisis usualy termed mass
node elimination and was included in some early minimum degree codes. It is quite naturd, in afinite
element like gpproach, to perform the minimum degree ordering on a graph where nodes in the same
degree clique are treated as a single node, and this was done by the minimum degree ordering agorithm in
the HSL code MA47 (Duff 1995). The second improvement to pivot selection stems from the observation
that, if two nodes of the same degree are not adjacent in the graph, they can be eliminated s multaneously.
Thisis termed multiple dimination.

The resolution of the second issue, graph update, was the main reason why minimum degree codes
improved by severa orders of magnitude over the decade 1976-1986. The principal saving was made by
using the clique structure of the reduced matrix and updating this rather than individua edges of the graph.
This was discussed in the review by Reid (1987).

There are two main approaches to updating the degree counts. One is too have a threshold and compute
the new degrees only if they could fall below this threshold. The threshold must, of course, be changed
dynamicaly, a which point some recalculation of degreesis necessary. The second is to replace the
minimum degree count by an approximate degree count that is easier to compute. Recently Amestoy,
Davis, and Duff (Davis 1995) have designed an approximate minimum degree ordering (AMD) where the
bound is equal to the degree in many cases. They have found that their AMD ordering is amost
indistinguishable from the minimum degree ordering in equality but it is much faster to compute. It is only
within the last year that the supremacy of minimum degree has been challenged. The beauty of dissection
orderingsis that they take a global view of the problem; their difficulty until recently has been the problem
of extending them to unstructured problems. Recently, there have been severa tools and approaches that
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make this extension more redlistic.

The essence of a dissection technique is a bisection agorithm that divides the graph of the matrix into two
partitions. If node separators are used, a third set will correspond to the node separators. Such a bisection
is then repeated in nested fashion to obtain an ordering for the matrix. Perhaps the bisection technique that
has achieved the most fame has been spectral bisection. In this approach, use is made of the Laplacian
matrix that is defined as a symmetric matrix whose diagonal entries are the degrees of the nodes and
whose off-diagonals are -1 if and only if the corresponding entry in the matrix is nonzero. This matrix is
singular because its row sums are all zero, but if the matrix isirreducible, it is positive semi-definite with
only one zero eigenvalue (called the Fiedler vector). This matrix can be used to define a bisection by

constructing a vector x that has components x; equal to +1 or -1, according to which partition node | lies
in. Then the quantity XT AX is 4 times the number of edges between the two halves of the bisection. We
can thus obtain an optimal bisection by minimizing XT AX subject to é X = 0 with x;=*1. Sincethefirst

congtraint corresponds to finding a vector orthogonal to the vector of al ones, which is the eigenvector for
the zero eigenvalue, in the corresponding continuous problem it is the eigenvector corresponding to the
smallest nonzero eigenvalue that is of interest. Normally some variant of Lanczos agorithm is used to
compute this (Duff 1996 ). The graph is then bisected according to the components of this eigenvector.

The spectral method requires much computing time, does not always yield optima bisections, and naturdly
produces edge separators, requiring some postprocessing to obtain a node separator set. For these
reasons, this technique is not strongly favored, and there has been much current research on aternatives.
But for the duct net task it can be approved. The main reason of thisis the necessity to make many
calculations for the duct net having topology fixed. This seems reasonable, to spend a comparatively big
time for preprocessing, but after this have a benefits of better ordering for a big number of different runs.

The other main approach to graph bisection is to perform graph reductions, compute a partition cheaply on
the resulting coarse graph, and from this construct a partition of the original graph, using some kind of
iterative improvement on the projection of this coarse partition on the finer graph. This approach is nested
and istermed a multilevel scheme. Multilevel schemes are very interesting and promising. Later we will
discuss them in application to the Newton method.

Solution of sets of sparse asymmetric equations. In the case of asymmetric systems usually a
Markowitz ordering (Markowitz 1957) or a column ordering based on minimum degree on the normal
equations is used together with athreshold criterion for numerical pivoting. The main recent activities for
asymmetric systems have been the development of methods based on partitioning and the production of
efficient codes using higher level BLAS operations. A decade ago, the only widespread use of partitioning
was to preorder the matrix to block triangular form prior to perform the analyze-factorize phase on the
block on the diagond of that form. A magor problem with this approach is that the partitioning does not
guarantee that the diagonal blocks are well conditioned, or even nonsingular. Thus some a posterior
measures must be taken to improve the stability of the factorization. This issue of stability was discussed
by Arioli, Duff, Gould and Reid (1990) and, more recently, methods for maintaining stability have been
developed by Hansen, Ostromsky and Zlatev (1994).

A related approach is to expand the matrix, perhaps artificialy, in order to obtain a system that is larger
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and sparser. Normdlly, there is a choice of pivots for this system that would reduce it to the origina
system. Thelogic of this that we might be able to do better by using the extra degree of freedom on the
expanded system. A simple example of this matrix stretching technique is the augmented system.

A mgjor tool in the efficient implementation of codes for asymmetric systems has been the observation
presented by Gilbert and Pgerls (1988) that partiad pivoting can be performed in time proportiond to the
number of arithmetic operations, so avoiding any potentialy costly sorting operations. A refinement of this
technique was provided by Eisenstat and Liu (1992), who suggested ways of pruning a search tree to
reduce work in the symbolic phase. Variants of this technique are used in nearly all-sparse partia pivoting
codes.

Frontal, multifrontal, and supernoda approaches for the solution of asymmetric problems have all seen
significant recent development. The HSL frontal code MA42, which solves asymmetric systems, was
redesigned to use standard Level 2 and Level 3 BLAS and can accommodate entry by both equations and

elements. If the matrix is close to symmetric in structure in the sense that g; isusually nonzero then g
is, then methods adapted from symmetric multi-frontal approaches can be used, with the analyze phase

performed on he pattern of A+ AT . This approach can work well for the duct net case (almost
Symmetric).

Preconditioning. One of the main problems with sparse LU factorization is that often the number of
entriesin the factorsis substantialy greater than in the origina matrix so that, even if the origina matrix
can be stored, the factors cannot. If the original matrix can be stored, the possibility isto start a sparse
LU factorization but drop some fill-in entries so that the partia factors can still be stored. Algorithms for
doing this are called incomplete LU (or ILU) factorization and they differ depending on the criteria for
deciding which entries to drop. At one extreme, we could hold al the factors, while at the other we could
store no fill-ins. This partial or incomplete factorization is then used to precondition the matrix for iterative
solution, normally using afairly standard Krylov-sequence based iterative technique like conjugate
gradientsin the symmetric case or GMRES or BiCG when the matrix is asymmetric.

The main criteriafor deciding which entries to include in an incomplete factorization are location and
numerical value. The commonest location-based criterion is to allow a set number of levds of fill-in, where

origina entries have level zero, original zeros have level [J and afill-in position (1)) haslevel | evel ;
determined by

min iLeveIik *Level ki +]} (381)

1EKEmING, )

The other main criterion for deciding which entries to omit is to drop entries less than a predetermined
numerica value. Since it is usudly not known a priori how many entries will be above a selected threshold,
the dropping strategy is normally combined with restricting the number of fill-ins allowed to any one
column. When using athreshold criterion, it is possible to change it dynamically during the factorization to
attempt to achieve atarget density of the factors. Although the notation is not yet fully standardized, the
nomenclature commonly adopted for incomplete factorization is ILU(K). 1t happened when k levels of fill-
in are dlowed and ILUT (&), for the threshold criterion when entries of modulus less than a are dropped
and the maximum number of fill-ins dlowed in any columnsisf.
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The use of incomplete factorizations as pre-conditioners for symmetric systems has a long pedigree and
good results have been obtained for a wide range of problems. An incomplete Cholesky factorization
where one level of fill-inis dlowed (ICCG(1)) has proven to provide a good balance between reducing the
number of iterations and the cost of the computing and using the preconditioning. The situation with
symmetric systems is quite well analyzed and understood.

The situation for asymmetric systems are, however, much less clears.  There have been many
experiments on using incomplete factorizations and there have been studies of the effect of orderings on
the number of iterations that show similar behavior to the symmetric case. However, thereis very little
theory governing the behavior for general systems and indeed the performance of ILU pre-conditionersis
very unpredictable. In fact, amayor problem is that the ILU factors can be more ill-conditioned than the
origina system and so the preconditioned system can perform much worse than the origind matrix with
respect to convergence of the iteration method.

The QR or LQ factorizations can aso be used in the asymmetric case to derive an incomplete
factorization. Here the orthogonal factor need not be kept and the resulting incomplete triangular factor
can be used to precondition the normal equations. Pre-conditioners based on those factorizations are
generally more expensive to compute but they are usually more robust. One way of computing an
incomplete orthogond factorization is to use incomplete modified GramShmidt (IMGS) (Ostrowski 1966).

Another whole class of pre-conditioners are those where the direct method is used to solve a sub-problem
of the origind problem. Thisis often used in a domain decomposition setting, where problems on sub-
domains are solved by the direct method but the interaction between the sub-problemsis handled by an
iterative technique. A related example of thisis the block projection methods.

Multi-grid techniques also often combine aspects off both iterative and direct methods. These methods
were originally developed for solving partia differential equations but devel opments such as agebraic
multi-grid extend their applicability to more genera systems. The basic idea is to use corrections on a
sequence of coarser grids to update the required solution on afine grid. It is common to use adirect
method for the solution on the coarsest grid with one or two iterations of usualy a smple iterative method
on the other grids.

Iterative methods. Iterative methods can be divided for stationary properties not changed with
iterations and nonstationary matrix of the transformation changed after every some iterations methods and
non-stationary methods.

Stationary methods

Jacobi. The Jacobi method is based on solving for every variable locally with respect to the other
variables; one iteration of the method corresponds to solving for every variable once. The resulting method
is easy to implement but convergence is slow.

Gauss-Seidel. The Gauss-Seidd method is like Jacobi method, except that it uses updated values as

soon asthey are available. In general the Gauss-Seidd method will converge faster than Jacobi, though
dill relatively dowly.
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SOR. Successive over-relaxation (SOR) can be derived from the Gauss-Seidel method by introducing an
extrapolation parameter u. For the optimal choice of u, SOR may converge faster than Gauss-Seidel by an
order of magnitude.

SSOR. Symmetric successive over-relaxation (SSOR) has no advantage over SOR as a stand alone
iterative method; however, it is useful as a pre-conditioner for non-stationary methods.

The above mentioned methods are comparatively old. There are newer much more powerful and
effective tools based on non-stationary methods.

Non-stationary methods.

Non-stationary methods differ from stationary methods in away they handle the information from the
changes at each iteration. Typically, constants are computed by taking inner products of residuals or other
methods arising from the iterative method. Description below is presented from Dongarra (1995).

Conjugate Gradient (CG). Thelinear conjugate gradient method was proposed by Hestenes and
Stiefel in the 1950s and is considered as the fundamental importance in scientific computing. Its
performance is strongly tied to the choice of the so-called pre-conditioner, which determines the
asymptotic rate of the convergence. The first nonlinear conjugate gradient method was introduced by
Fletcher and Reevesin 1960s, and is one of the earliest techniques for solving large nonlinear optimization
problems. Severa variations of the original method have been proposed and are widdly used in practice.
The importance of the non-linear conjugate gradient methods lies in the fact that they require no matrix
storage and are faster than the steepest descent method.

The Conjugate Gradient method proceeds by generating vector sequences of iterates, residuas
corresponding to iterates, and search directions used in updating the iterates and residuds. Although the
length of these sequences can become large, only a small number of vectors need to be kept in memory.
In every iteration of the method, two inner products are performed in order to compute update scalars that
are defined to make the sequences satisfy orthogonal conditions. The pseudo-code for the Preconditioned
Conjugate Gradient Method is follow:

0 0 Lo 0
Compute r( '=b- Ay for someinitid guess x

For1=1,2,...
Solve M X(Ihl) = r(l-l)
= i-1)" @1
) r( ) x
if =1
@ _ (0
r =X
ese
b~ ri—ll r,
—_ (-1
ri-z +b(i-1)r(i-l)
endif
0_ A
a —"pg
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check convergence; continue if necessary.

For the Conjugate Gradient method, the error can be bounded in terms of the spectral condition number

e of the matrix M - A If &l and €0 are the largest and smallest eigenvalues of a symmetric positive
definite matrix B, then the spectral condition number of B is e=€1/é0

Minimum Residual (MINRES) and SymmetricLQ (SYMMLQ). When A isnot positive definite,
but symmetric, one can till construct an orthogona basis for the Krylov subspace by three term’s
recurrence relations. In matrix form recurrence can be written as

AR = RaTi

where T,isan (I+1)Al tri-diagonal matrix isan tri-diagona matrix. But a problem exists that an inner
product no longer defines. However, we can still try to minimize the residuas in the 2-norm by obtaining

X1 {rO.ArO.---, A”r"}.xi =RY
that minimizes

|AX -], =|RTiy- b,

Hereisthe fact that, if D ° diag(”r()"z,"r]ﬂz,---,"ri"z),then R.1 Di}isan ortho-normal transformation

with respect to the current Krylov subspace exploited as: the element in the (I+1,1) position of T; can be
annihilated by a smple Givens rotation and the resulting upper bi-diagona system (the other sub-diagond
elements having been removed in previous iteration steps) can smply be solved, which leads to

the MINRES method.

Another possibility isto solvethesystem Ti Y = ||r°|| €', asin the CG method (T; isthe upper i*i part of
T, ). Other thanin CG we cannot rely on the existence of a Cholesky decomposition (since A is not

positive definite). An dternative is to decompose T; by an LQ-decomposition. This again leads to smple
recurrences and the resulting method is known as SYMMLQ .

Conjugate Gradient on the Normal Equations: CGNE and CGNR. If asystem of linear equations
Ax=Db has a non-symmetric, possibly indefinite (but nonsingular) coefficient matrix, one obvious attempt at
asolution is to apply Conjugate Gradient to a related symmetric positive definite system, TAx=ATb. While
this approach is easy to understand and code, the convergence speed of the Conjugate Gradient method
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now depends on the square of the condition number of the origina coefficient matrix. Thus the rate of
convergence of the CG procedure on the normal equations may be slow.

Severa proposas have been made to improve the numerical stability of this method. The best known is
based upon applying the Lanczos method to the auxiliary system

eel A(_‘mgzwg
N 0 &0

A clever execution of this scheme ddlivers the factors L and U of the LU-decomposition of the tri-
diagonal matrix that would have been computed by carrying out the Lanczos procedure with ATA
Another means for improving the numerical stability of this normal equations approach is based on the
observation that the AT A matrix is used in the construction of the iteration coefficients through an inner
product like (p,ATAp). This leads to the suggestion that such an inner product be replaced by (Ap,Ap).

Below a short review the common approach will be presented. Using this approach amost all modern
numerical methods for iterative solution of the linear equations can be devel oped.

Krylov subspace methods. Krylov subspace based methods can be viewed as polynomial-based
iterative schemes for solving systems of the form Ax=Db, of dimension n. The genera form of a polynomia
iterative scheme is given by

_ o
X=Xt a hkjrj
(3.82)

where r, =b- Ay,

Krylov subspace based methods compute new approximations to the solution, x, , from the affine
subspace defined by

% T Kilror A (3.83)

where the Krylov subspace of dimension k is defined by

1

2 k-
Kk(rO'A)O q)an(ro"a\f'o’A For A ro)’ (384)

and [ ,istheinitial resdua determined from the initial solution guess, X, .

Two different approaches taken in the derivation of Krylov agorithms, namely, the minimal residual
approach and the orthogonal residua approach. The most promising are the algorithms based upon the
Arnoldi process (GMRES) and the non-symmetric Lanczos process (CGS, Bi-CGSTAB, TFQMP).

The most well known methods from this family: Method of steepest descent, Gauss-Seydel-type iteration,
Conjugate direction methods, and Orthodir
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Conclusions:

1. The universal tool for linear system of equations solution is not exist.
1. Choicefor linear equations solver problem dependent and must be performed according the task
parameters by the code itsalf.
2. Parameters significant for the choice of the method are
number of equations
sparsity level
non-linearity of the main task level
warm start possibility
number of nonzero membersin the main matrix and in the factorization
3. For linear equations solution the next methods can be used
for the unknowns number of several thousands is the combined unifronta/multifrontal agorithm
for the unknowns number of n* 10,000 isthe Krylov's subspace methods with preconditioning
based on incomplete factorizations
for the unknowns number of n*100,000 is the Krylov’s subspace methods with preconditioning
based on multi-grid or other many level approach.
5. The BLAS must be used as a basis for all condense matrixes calculations.
6. Sparsity can be effective used not only for equations solution but for Jacobian calculation as well.

The method for solution of linear systems must be task dependent. The different tasks approximately can
be classified as

small tasks (number of unknownsis £ 1000)

medium tasks (number of unknowns £ 10,000)

big tasks (number of unknowns £ 100,000)

super big (number of unknowns > 100,000)

For small tasksit is possible to use smple methods, based on full mode standard software from
LINPACK, based on direct solution techniques. Whenever the Jacobian shows no specia structure but
turns out to be sparse and the size of the task medium or big sparse mode elimination techniques may be
successfully applied. As example, it is possible to use well-known MA28 package developed by Duff. In

the symmetrical case task the MA27 may be used. For the big and especialy super big tasks the Krylov’'s
method must be applied.

3.3 Control systems

Problem Formulation and Derivation of the Necessary Condition. For duct net design control task
it is possible to write the following

Min F(y,u)
C(y,u)=0 (3.85)

y>0,u>0
where:
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yl R"
UT Rn- m
n and m are positive integers satisfying n > m.

The functions f and C are considered smooth and definedas f : W® R,anddC:W® R",
where Wis an open set of R” containing {y: ¥ 2 0} {u:us 0} .

For the duct net case:

y isthe vector of state variables,

u is the vector of control variables,

C(y,u)=0 is the discreetized state equation,

F(y,u) the sum of squares of the defects of equations y=g.

If the solution of Equations 3.85 have F(x,u) > 0, control is failed to handle control variablesin the limited
needed. Problem described by Equations 3.85 can be solved by interior point Newton algorithm according
to the Vicente (1996).

Constraint qualifications and optimality conditions.  In the notation thereis

_®0

(3.86)

Also, (2), and (2),, represent the sub-vectorsof ZI' R" corresponding to the'y and u components,
respectively, and I, represents the identity matrix of order P The Lagrangian of f(x) with respect to the
equality congtraints C(x)=0 is represented by I(x,)=f(x)+& C(x). The Jacobian matrix of C(x) is denoted
by J(x). Due to the partition of x in'y and u, following takes place

JX)=(Cy(x) Cu(x)) (3.87)

Assumptions, applied to this approach.
Assumptions 1.

1. Thefunctionsf and C are twice continuoudly differentiable with Lipschitz second derivativesin .
2. The partia Jacobian Cy (x) is nonsingular in \W.

The method description. Let U be an open set containing { u: u>0} such that for al u U exiga

solution y of C(y,u)=0 and such that the matrix C,(x) isinvertible for al x= (yT , xT)r with ul U and
C(y,u)=0. Then exist atwice continuoudy differentiable function

y:U® R"
(3.88)
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defined by
C(y(u),u)=0.

This alows reducing the minimization problem to the space of the control variablesu

Minimize f(y(u),u)
Subject to y(u)>=0,u>=0. (3.89)

The optimality conditions and constraint qualifications used by Vicente (1996) ) are Karush's, Kuhn's, and
Tucker's (KKT) conditions. .

The diagona matrix D(x,1 ) with diagonal elements is described by

F(x) i (R 1)) 0
f1 it (RI(x1))£0

0 otherwise,

Proposition 1. A non-degenerate point X, with corresponding multipliers | -+, satisfies the second-order
sufficient optimaity conditions if and only if it satisfies the first-order conditions and

D(x*,l *)NZ)OJ(X*,I *)D(x*,l *)+ E(x*,l *)
(3.92)

is a positive definite on the null space of J(x*)D(x*,I )

Proposition 2. If x- isaregular point, then the matrix D(x* | *)J (x*)T has full column rank.
If the regular point - with corresponding Lagrange multipliers | «, is such that Matrix 3.92 is positive
definite, then the matrix

D (x| -FREI (1) +E(6, 1) D(x,1-) I(x)6
é J(%)D(x,1 +) 0 p
isnongngular.

The Newton's method applied to the system of nonlinear equationsin x and é
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D (x| PR, I(x1)=0
(3.93)

C(x)=0
(3949)

This agorithm is of the interior-point type, meaning that X is required dways to be strictly feasible with
respect to the bound constraints. A linearization of Equations 3.93 and 3.94 is of the form

a® (x| PREIOG1)+E( 1) D(x ) FI(x) Ges o_ a®(x! FRi(x1)0 305
¢ I(X) 0 #Dg Cx 5 o9

the second linear equations in Expression 3.95 is the linearized state equation. The first linear equation in
Expression 3.95 has been derived by applying the product rules to Equation 3.93 the case where
differentiability is existing.

Let us use the next notation: 5=D(x,1 | s

After smple transformationsit is possible to have from Expression 3.95:

a® (x,1') N& (% 1)D(x1 )+ E(x1) D(xI)JI(x)eess_ aD(x!) K. (x!1)¢

g J(x)D(x1) 0 2Dl 5 C(x) : (3.96)

The form of the coefficient matrix in Expression 3.96, Assumptions 1, and Proposition 2, together imply
that the affine-scaling interior-point Newton agorithm is well defined in a neighborhood of a non-
degenerate regular point that satisfies the second-order sufficient optimality conditions.

For father description the next notation will be necessary

S_ae;yg

_gsufu’
(3.97)
D(x,|)=§®y(g") Du&l)z E(x,l)=§y(g'l) Eu(il)% %)
and
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a8, 1 (x.1)o_af, f(x)+c,(x1 0
N, (1 z=Cc " y e .
b= e o &R F( o1 2 590
Using thisit is possible to rewrite the Newton equations as follows
D, (xI FRGI001) +E, (1) D,(x! PR%Ix1) Dl Fc,(x]¢
¢ Duxl FREI(xI) Du (%! PREIO )+ E(x 1) Dl Feu(x) =
g C,(x) Cu(x) o 3
%8s, (0 gEDy EN f(x)+c(><)l;9
égs,;,— -6Dy (%1 IR T +Cu(x'1 )= (3.99)
oy § Cc(x) z

From the firdt linear Equation 3.98 it is possible to obtain

Cy(X)_TNy f(X)' I

(3.99)

D == (C, (I TREI 0T+, Dy (%1 )7 (1) € (4T REI (! ))g&ﬁ
7]
The third linear equation can be rewritten as

Cy(X)s, +Culx)s, =-C(¥)
(3.100)

since Cy(X) isnonsingular, it is possible to obtain

s=g"+W(X)s,
(3.101)

where

- Cy(x) "C()8
S o

(3.102)

isaparticular solution of the linearized state equation, and
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(4 'c.(2)8

W(x) :g Cy |
n-m a

(3.103)

isamatrix whose columns form is a basis for the null space of the Jacobian matrix J(x).

The second linear Equation 3.98 can now be rewritten only in variables s, by using the Formulas 3.100,
3.101, 3102, and 3.103 from above.

(W(x)" 12 06W)) s, = - W ()T (12 (%1 )"+ R (%)), (3.104)
where
_ak2 1 (x1 )+ Dy(x!)°E,(x1) Rzl (x,1) 0
a ’I - yy y : .
H (x,]) § R, 1(x 1) R0 )+ Dulx] ) 2B (1 )5 (3.105)

is an augmented of the Hessian N2 (X,1 ) of the Lagrangian function I(x,&). The augmented term

as,(x1) 0 o_am,(xI)’E,(x1) 0

G(x1)= X 0 |
(x,1) g 0 G.(X1)g 0 D.(x1 ) E.(x1 )5 (3.106)

takes into account the presence of the bound constraintsin the variables y and u.

Affine-scaling interior-point Newton algorithm. In summary, the affine-scaing interior-point
Newton agorithm is the following:

1. Choose an initid point (x,&) with x >0

2. Until convergence do

2.1a Compute (S, D) by solving Equation 3.96 for (S, Dl ) and then by setting S= D(X,1)S or,
equivaently,

2.1b Compute s’ asin Equation 3.102.
Compute S, by solving Equation 3.104)

Compute s, = (s”)y - Cy(x)'ICu(X)Su
Compute DI by Equation 3.99

22 sta=——7— ,wheret 1 (0.0
mnix s,-lj

Set the new iterate (x,€) to (x,é)+(aS, DI ).
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This dgorithm is localy well-defined around a point satisfies the standard Newton assumptions, i.e., a non-
degenerate regular point for which the second-order sufficient optimality conditions hold.
The grquadratic rate of convergence of this agorithm is guarantee by the next Theorem.

Theorem 5. Lets Assumptions 1 hold and consider a sequence in the pair (x,€) that satisfied the
second order sufficient optimality conditions. If 8 is chosen so that [t - 3 = Of|Fa(x, | )||) where

_ 3D (x,1 PR (x,1)6
1 1| - 5
FbD § C(x) 5

then a sequence converges with a g-quadratic rate. The corresponding sequence in z generated by
z=2(x,6) converger quadratic to z- = Z(x* i )

Conclusions. The dgorithm for solution of the control problem for airflow in duct networks as the
mathematical programming task is outlined according to Vicente (1996). This dgorithm can be used asa
base for computer code development.

3.4 Final discussion

Different approaches for solving systems of nonlinear equations was analyzed. It was shown that the
more promising approaches are the family of Newton Affine Invariant methods, the Tensor methods and
the Homotopy methods.

If agood initid solution is known, the best choice is one of the Newton Affine Invariant methods. For
comparatively large problem, when time for solution is significant, the Tensor methods are a good choice.

For the most practical cases, when either: (1) timeis deficient to search for agood initia solution, (2)
automation is needed for different types of evaluation of technical solutions, or (3) parametric evaluation is
necessary, Homotopy methods are the best.

All methods shall included into the computer code. The first version of the code should be based on the
Homotopy method as the most user friendly and robust. Moreover, Newton Affine Invariant methods and
Tensor methods can be used as a part of Homotopy method. In this case Homotopy method will be a
conceptua basis for solution.

4. Problem formalization

The proposed definition of the problem considers laboratory rooms, as well as supply and exhaust air
distribution systems, fume hoods, exfiltration and infiltration, fume hood fans and filters, and other auxiliary
fans as nodal parts of a network.
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At any time the mass of air entering the room is aways equa to the mass of air leaving thisroom. This
includes air entering the room with infiltration or exiting the room with exfiltration. In spite of this equality,
laboratory spaces are aways under either positive or negative pressure.  Pressure in the room depends
not on the difference between supply and exhaust air but on the position of "zero-point”, which is the
location where the positive pressure originated by supply system changes to the negative pressure
originated by the exhaust system. This position is afunction of central supply and exhaust fans,
resistance of ducts and fittings, position of dampers, duct and construction leakage, open/closed doorways,
and performance of unitary, auxiliary, and/or manifolded fans. Doorways are assumed closed. However
arr isleaking through door dits.  Schematicaly, if a"zero-point” is "after” the room, the room pressure is
positive, and if "zero-point” is "before” the room, the room pressureis negative. The easiest way to control
"zero-point” is by changing the resistances of dampers either in supply or in exhaust/return duct connected
to the particular room.

It will be shown that the air conditioning systems under investigation are not the tree-networks studied by
the T-Method (1990) but atruly free topology 2-dimensiona network with loops. Even a part of this
network, the central supply and the exhaust systems, can be associated with tree-network sub-systems.

The major difference between existing methods and the proposed one is that in the proposed method the
multi-fan multi-lab network simulation coexists with control system simulation and statistical modeling.

4.1 Topology

Topologicaly laboratory air distribution systems which include central supply, central exhaust systems,
many exhaust fans, rooms, and in/exfiltration can be represented by a cycle graph system. Topology of
such systems can be simplified when it is considered that a subtree represents the central supply system
where the supply fan(s) isthe root. The central laboratory exhaust system is sometimes topologically
isomorphic to the central supply system. Such isomorphic supply and exhaust systems can be represented
by two tree-graphs connected at the terminals (Figure 3). Every root of such atree-graph includes a
supply or an exhaust fan or a number of fans connected in parale (often) or in series (seldom), and every
terminal is a connection to an internal laboratory space.

The most important benefit of the isomorphic topology is that the systems have a"limited cycle structure'.

The main cycles of such systems can be simplified by "gluing” two tree-graphs at their hanging nodes
(leaves). Thisalows one to identify the flow directions in the common arcs from supply to exhaust
avoiding the main difficulties of calculating the systems with cycles. The only difficulty with identifying
flow directions is the infiltration/exfiltration e ement since the pressure is unknown at the beginning of
caculation. However, this element of the network is aways belongs to the branches.

The following four schematics of air distribution systems demonstrate the transformation of an air network
into agraph. All four schematics are only examples of topology formaization and do not pretend to be a
part of engineering design.

Figure 4 presents a constant volume supply and exhaust system with paralldl fans and reheat coils
controlling temperatures in spaces #1, #2, and #3. The formalized topology of this system is presented on

Figure 5. Two nodes present each network element; one of which is an inlet and another is an outlet.
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Pressure difference between these nodes represents the pressure loss in the element. The exception to
this rule is the space/room, which assumes no pressure difference. Reheat coils control the temperatures
in the rooms. The use of constant volume terminals assumes that the pressure in the spaces is kept the
same as surrounding dampers BD1 through BD6 st it.

Figure 6 presents a variable air volume system with infiltration/exfiltration element in the space #3 and
exhaust stack. In this example maximum concentration of gasses at air discharged from the exhaust stack
islimited. Thisiswarranted by using an air bypass damper CD4 sensoring air velocity on the top of the
stack as shown in Figure 6. The supply fan curve is controlled by the static pressure sensor located in the
supply duct. This sensor sets variable frequency drive VFD1 into a position that keeps static pressure in
the supply duct constant. Variable air volume terminals together with exhaust dampers CD1, CD2, and
CD3 control pressure and temperature in the rooms. This schematic is formalized on Figure 7.

Figure 8 presents a variable air volume system with air cascading and two fume hoods located in the
rooms. The variable volume termina VAV T controls air flow supplied to the corridor. Air flow from the
corridor #1 is entering the rooms through cascading dampers C1 and C2. Auxiliary fan F4 supplies air to
the fume hood AFH1 There are two exhaust ducts in this room, one from the fume hood and the second
from the room itself. The second exhaust is balancing the room pressure when the fume hood is changing
the regime. The second fume hood in room #3 has an individud filter FL3 and individual exhaust fan F3.
The pressure in the room is controlled by the damper D3 similar to theroom #2.  This schematic is
formalized on Figure 9.

Figure 10 presents a variable air volume system with manifold fume hood system and supply and exhaust
plenums. This system is equipped with computer that analyzes the pressure and temperature in each room
and controls the variable frequency drive VFD2 at central exhaust fan. There are three fume hoods. one
in the room #1 served by the unitary exhaust fan F3, two in the room #2 served by the two individual fans
F4 and F5, and three in the room #3 served by the manifold system connected to the exhaust fan F6.
Thereis an additiona pressure balancing exhaust fan F2 in the room #1. Also this room has an
infiltration/exfiltration element. This schematic is formaized on Figure 11. Even for this complicated
system the direction of flow can be easily identified for dl arcs except the infiltration/exfiltration element in
room #1.

Figure 12 is similar to the previous Figure 10 however it does not have the central exhaust system since

the design amount of exhaust air is higher than necessary for ventilation. Thisis very often practical
design case.
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Figure 4. Constant Volume Central Supply and Exhaust Reheat Systems
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Figure 5. Formalized Topology for Constant Volume Central Supply and Exhaust
Reheat Systems
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Figure 6. Variable Air Volume Central Supply and Exhaust Systems
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Figure 7. Formaized Topology for Variable Air Volume Centra Supply and
Exhaust Systems
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Figure 8. Variable Air Volume Centra Supply and Exhaust Systems with
Cascading and Fume Hoods
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Figure 9. Formalized Topology for Variable Air Volume Central Supply and
Exhaust Systems with Cascading and Fume Hoods
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Figure 10. Variable Air Volume Central Supply and Exhaust Systems with
Penums, Manifold Exhaust, and Computer Control.
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Figure 11. Formalized Topology for Varigble Air Volume Central Supply and
Exhaust Systems with Plenums, Manifold Exhaust, and Computer Control.
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Figure 12. Central Supply with Loca and Manifold Exhaust.
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Figure 13. Formalized Topology for Central Supply with Local and Manifold Exhaust.

90



4.2 Control function

Control of fan discharge or resistance of dampers, termina boxes, and sashes depends on location on their
sensors. The user will be able to locate these sensors in any place of the system. Such control parameters
will be:

- Static pressure,

-~ Tota pressure,

-~ Airflow volume,

- Air flow volume difference,
-- Air vdocty,

--  Static pressure difference,
-~ Air temperature.

Asone can seeg, in case of air flow or static pressure differences, two sensors must be located. The user
must present following data for each control device:

-~ Control parameter,

--  Sensor locations (two locations for flow or pressure differences),
- Initid setpoint,

-- Minimum-maximum range limitation,

-- Contraller function.

Coefficients for a controller described in an agebraic polynomia equation will be a part of the user input.
The graphical input of this function should be evaluated. It will transmit the signal received from the
sensor to the control device as a response to a change in parameters. The possibility of simulating the
automatic reset of control parameters and setpoints will be investigated.

Fan operating point will be controlled by one of the following devices selected by the user: (1) discharge or
inlet damper, (2) inlet vanes, (3) pitch, or (4) variable frequency drive (VFD).

Smilarly, it will be possible to control each damper from a sensor located in any place of the system
selected by the user, including duct, room, cabinet, fan or exhaust stack discharge. For example, an outside
air bypass damper in the exhaust plenum will start to open if the exhaust stack discharge velocity becomes
smaller than the air velocity setpoint assigned by the user (mostly around 3000 fpm). Another smulation
of control element (or exhaust fan) will be the bypass grille located in fume hoods.

4.3 Elements

In addition to a network, there is an important definition of system elements and system arcs. Arcs
represent scalars of air flow. Most elements are represented as arcs between two nodes, low pressure
and high pressure. Three arcs between four nodes (wye or tee) or four arcs between five nodes (cross)
represent junctions. Some elements like entries, infiltration/exfiltrations elements, and exits are associated
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with the terminal nodes. Others such as fans, dampers, fume hoods, BSC, many fittings are connected to
the intermediate nodes. A specia definition is made for rooms. a single node rather than an arc present a
room. This meansthat a single pressure and a single flow characterize each room. The air resistance in
the room isignored and the flow is equal to the total supply or total exhaust air.

Arcs are mostly ducts and plenums. Infiltration into a room from the atmosphere or exfiltration from a
room into the atmosphere is represented by an arc where the room and the atmaosphere are pressure
nodes. A junction that connects three ducts. main, common, and branch has three arcs with different
flows and four nodes. The static pressure in the intermediate node will represent the average static
pressure in the junction. Each system arc and node is associated with a number of parameters. Following
isthe list of mgjor elements, arcs, and parameters:

balancing

Arc/node Element name Parameters
1-Arc Duct section Topologica connections, Air flow, Shape, Size, Length,
Temperature, Velocity, Pressure loss, Static pressure at both
nodes, Leskage, Density, Viscosity, Reynolds number,
Roughness, Friction coefficient, Sum of C-coefficients related to
the section velocity,
Heat loss/gain
2-Arc Doorway dit at Topologica connections, Air flow, Equivdent size, Ve ocity,
closed door Pressure difference, Static pressure at both nodes, Density,
Viscosity, C-coefficient
3-Arc Infiltration/ Topologica connections, Air flow, Equivalent size, Ve ocity,
Exfiltration Pressure difference, Density, Static pressure at both nodes,
Viscogty, C-coefficient
4-Arc Plenum (pressure Topologica connections, Air flow, Shape, Size, Length,
loss is neglected) Temperature, Leakage, Static pressure
5-Arc Hesting/Cooling Coil | Topologica connections, Air flow, Heating/cooling capecity,
Shape, Sze, Temperature at both nodes, Average velocity,
Pressure loss, Static pressure at both nodes, Density at outlet,
Viscosity, C-coefficient
6-Node Zone/Room Topologica connections, Static pressure, Temperature, Air flow,
Heat loss/gain
7-Node Dampers. Topologica connections, C-coefficient at open position,
fire/smoke/back draft | Open/close position
8-Node Dampers. control or Topologica connections, Type of damper and associated

geometry, Angle, C-coefficient
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9-Node Fittings: Topologica connections, Geometry, Size, C-coefficient, Other
Entry information associated with the type of fitting (ASHRAE
Exit Handbook 1995, Chapter 32 "Duct Design” or DFDB (1994)
Trangtion
Junction
Obstruction
Louvers
Fan/duct link
10-Node VAV control box Topologica connections, Pressure/temperature setpoint, C-
coefficient
11-Node Congtant volume box | Topologica connections, Volume flow setpoint, C-coefficient
12-Node Fan Topologica connections, Type of fan, Fan curve, Inlet/outlet
size, Dengity at inlet, Heat gain, Type of control, RPM,
Efficiency, Brake power, Inlet vanes percent of opening, Pitch
agle
13-Node Hood/canopy idand Topologica connections, Type, Size, C-coefficient
14-Node Sound attenuator Topologica connections, C-coefficient
15-Node Fume hood or Topological connections, Maximum sash and bypass free aress,
biologica safety Function between free areas of sash and bypass, C-coefficient,
cabinet Operating schedule

The relationship between hydraulic resistance of fittings or equipment and actuators position is described
by C-coefficients (DFDB 1994). These coefficients are mostly presented in a table form, however for

some of them algebraic formulas exist (Idelchik 1996). In our opinion, the more genera way of using C-
coefficients is the tables.

Following isthe list of hydraulic equations for the main e ements recommended for Bellair computer
program (units see above):

() Duct/Plenum.

Darcy-Weisbach equation

efL . _Ov?r
DP = é; +3 Ci— (4.1)
Df Q 2gc

Equivaent-by-friction diameter for rectangular ducts:

H™ W
H+W

D, =2

4.2)
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Air density
(P, - 0.378R, )

r =1000 4.3
287.1+(273.15+T) 43
Reynolds number
D,V
Re=—"
n 4.9
For fully developed laminar-viscous flow when Re [ 2300
=2 (4.5)
Re '
Altshul-Tsal's equation (ASHRAE 1997) for fully developed turbulent flow (Re >2300)
g@2e 680
f0=0.1102+ 22 (46)
g D, Reg
if f'3 0.018 then f=f
if f'<0.018 then f =0.85f" + 0.0028
Air leakage
DG - ach PSO.GS (47)
Heat loss/gain from/to a duct (ASHRAE 1997)
UPL
Q= (4.8)
(Cf )(Tav.duct - Tambient)
where:
cf = converging factor, 1000 for Sl units [12 for IP units]
U = duct overall heat transfer coefficient, W [Btu/h-ft>-F]
P = perimeter of duct, m [in]
L = duct length, m [ft]

(2) Doorway dips. Thetechnique for calculating infiltration and exfiltration presented in ASHRAE 1997
Handbook is based on Darcy-Wei sbach equation solved in respect to flow:

’2[}3
G:CDA T (49)

G = Air flow rate, cfm [m/g]

where:
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Co = Discharge coefficient for opening, dimensionless

A = Cross-section area of opening, ft* [m]
AP = Pressure difference across opening, in\WG [Pd]
fi = Air density, lbmvft® [kg/m?’]

The relation between the discharge coefficient Cp and local resistance coefficient C is

1

C.=— 4.10
° =TS (4.10)
The local resistance coefficient for a thick-edged orifice is presented by Idelchik (1996, p.219, diagram
4-12):
.075 2 .0375 .
0 0 0 0
C :0.5?- AQ +§- HO B A2 gﬁ A9 (4.11)
Ag A g Ag A g
where:
Ao  =Freeorifice area, ft? [,
A;  =Wall aeafrominlet side, ft2£mz],
A,  =Wall areafrom outlet side, ft* [m?],
0 = Function which depends on the ration between the thickness of orifice to its
hydraulic diameter, [from O to 1.3, average=1]
—_ . _8 -
t=(24-7)7107, j=o025+22® -1
0.05+1° D,

I = Orifice thickness, ft [m]

Assuming very large wall areas and low door thickness having | = 0.2 and t = 1.22, coefficients C is
2.72 and Cp=0.606

(3) Infiltration/exfiltration. Similar to doorway dips.
(4) Plenum. Air leakage similar to duct leakage related to plenum surface and depends of |eakage class.

(5) Heating/cooling coil. Unless C-coefficient is given, coil resistance is presented as pressure |oss for
nominal flow. For smulation reason pressure |0ss has to be rearranged into C-coefficient:

DP A

c=2
G?r

(4.12)

where:

= Local resistance coefficient, dimensionless
Pressure loss a nominal flow, Pa[in WG]
Flow, /s [cfm]

= Coil cross-section area, nt’ [ft]]

= Air density, kg/m? [Ibm/ft?]

S>>0
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The outlet coil temperature is calculated as (smplified case):

Q
=] +——
Tow =Tin £ @)cr G (4.13)
where:

cf = Unit converging, 1.0 for Sl (60 for IP)

Tin = Call inlet temperature, °C [°F]

Q = Heating/cooling load, kJ [Btuh]

Cp = Specific heat at constant pressure, kJ/(kg-°K)[Btu/lbpy-°F]

The function of the controller changing heating/cooling load can be approximated as a polynomial
Q=aT’+bT?+cT +d (4.14)

where:
T,  =Room temperature, °C [°F]
ab,cd = Constants

(6) Room. It was mentioned above that pressure loss in aroom could be neglected. However, static
pressure in aroom and its sign that depends on position of "zero pressure” point is one of the most
important design parameter.

Therma regime in aroom is a function of heat balance that is the difference between heat loss and heat
gain. Thetemperature in the roomis

T =7 +_aQ

Tt Eero (4.15)
where:

cf = Unit converging, 1.0 for SI (60 for IP)

T, = Room temperature, °C [°F]

OQ = Thesum of heat gain/loss, kJ [Btuh]

Cp = Specific heat at constant pressure, kJ/(kg-°K)[Btwlbm,-°F]

The variable OQ includes of heat gain/loss from walls, ceiling, floor, doors and windows, partitions,
infiltration/exfiltration, people, equipment, appliances, eectrical motors, and lights.

(7) Fire/smoke/backdraft damper. The local resistance C-coefficient for open damper is presented in
SMACNA book (SMACNA 1995).

(8) Control damper. The locd resistance C-coefficient is presented in DFDB (1994) as a function of
angle, shape, type (butterfly, gate, parallel or opposed blades), number of blades, ratio of open area (for
gate), duct perimeter and blades length (for multi-blades).

(9) Fittings. C-coefficients for fittings can be obtained from DFDB (1994). Many tables, one-, two-, and
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three-dimensional represents them. These tables have to be interpolated either ones at the beginning of
caculation (fixed fittings) or at each iteration (variable fittings).

(10) VAV control box. C-coefficient should be obtained from manufacturers.

(11) Constant volume box. C-coefficient should be obtained from manufacturers.

(12) Fan. As mentioned above there is a number of ways to represent the flow-pressure characteristics
of afan. The easiest way is to approximate the curve by afew lines. However, the best calculation

results can be obtained when the curve is approximated by aformula. This should avoid oscillations at
caculation. The formularecommended by Stoecker (Stoecker 1975) is proposed:

Q, =¢, +C,P, +¢,P,° +¢,N + N2 +¢,P,N+c,P.°N +¢,P, N2 +c,P.°N?  (4.16)

The coefficients c; through cg should be approximate automatically in a computer program for a
representative curve and recalculated for any other rotation using the "Fan Laws' (ASHRAE 1996)

N
Q;, =Q, — (4.17)
1 N2
aN, O
P, =P, éN_l; (4.18)
2

(13) Hood/Canopy. C-coefficients for fittings can be obtained from DFDB (1994).

(14) Sound attenuator. C-coefficients can be obtained from DFDB (1994) as a part of duct mounted
equipment.

(15) Fume hood/Biological safety cabinet. C-coefficient, which for many types of fume hoods
depends on sash position, should be obtained from manufacturers.

5. Main flow chart

The air digtribution systems in alarge laboratory building will be divided into a number of units smulated
separately. It isproposed that each calculation unit will consist of only one central supply system with
many corresponding exhaust systems, individuas, manifolded, centralized or combined.

The proposed numerical method will perform four major caculations:

(1) Definition of air flows and pressures for known setpoints of control devices (damper openings, given
fan RPM, known opened area for sashes, etc.),

(2) Definition of setpoints for control devices,
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(3) Random selection of the positions of FH/BSC sashes,
(4) System performance analysis.

As aresult of such calculation the user will receive air flows, air velocities, in al system sections and
pressures in al system nodes. This includes workspaces, manifolds, fume hood inlet sashes, stack
exhausts, and ductworks. Also, the user will receive fan operating points and fan characteristics, positions
of al system control devices, and corresponding electrical energy consumption. Air system performance
will be studied in the third step by randomly selected positions of sashes and other control and laboratory
units. The user will input the loading schedule for each unit and computer will randomize the position of
control device and create atotal usage (diversity) factor as a recommendation for optimum design. There
are four mgjor fragments of the program Bdllair:

(a Preprocessor that includes data input, verification, and printout,
(b) Solver that includes cal culation routines,

(c) Postprocessor that includes verification and printout of the results,
(d) Database population and access.

Following is the flow chart of the modeling process:

(1) Preprocessor. In the flow chart (Figure 14) preprocessor is presented by a single block. This block
consistsinput data entry, including topology, duct Sze, fitting, fans, terminds, infiltration/exfiltration
elements, fume and BSC schedules, sensors, controllers and actuators, allowable parameter ranges in the
rooms, allowable velocity range in the opening of each sash, and other equipment. One of the main parts
of the preprocessor is data evaluation.

(2) Local Fitting Libraries. Computerized fittings selection and C-coefficients interpolating from tables
a each iteration takes substantial computer time for selecting the fittings from the globd library on ahard
disk. A speed up process of creating and using local libraries was proposed in T-Duct (Tsal et.a. 1990)
and will be used in Bdlair. It isbase on the principle that fittings at the same systems are mostly identical.
All fittings are divided into two types: fixed and varigble. Fixed fittings are not changing C-coefficients
with iteration and can be caculated once only. Variable fittings must be calculated at each iteration. At
the beginning the program copies al fittings necessary for the calculated system from the global fitting
library on a hard disk. Then it analyzes each fitting and, if the fitting is fixed, it caculates the C-
coefficients and stores only its value into aloca library of fixed fittings for future use. If the fitting is
variable, it stores the selection table (or formula) into a different small local library of variable fittings on
RAM. No more selection is needed from the global library on hard disk. According to T-Duct, this
procedure drastically reduces the CPU time and makes unnecessary the use of approximation formulas
for fittings. Notice that the resistance of FH/BSC sashes depends on its free area opening and belongs to
the variable fittings.
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(1) PREPROCESSOR ( Input Data Entry and Verification:
topology, size, fittings, controls, FH/BSC schedules, etc|

(2) Create Local Fitting Libraries|.
Fixed and Variable

(3) Initialize Time

(4) Initialize Airflow and
Setpoints for Control System

(5) Select Position of Sash for each FH/BSC
within Schedule According to Time

(6) Calculate C-coefficients for
Variable Fittings

(7) Calculate Airflow Distribution
Pressures, Velocities

Global Fitting Librar

A

\ A

Airflow Converging

(8) Control System Response
(set damper angles and fan operating points)

Converging o
Control Elemen

Analyze

Convergence
Store Solution

and Parameters

(9) Parameters of Contro

Nodes OUT of Range

\ 4

(10) Select M-time Randomly

M = max No

Yes
| (11) Calculate Usage Factor |

[ (12) POSTPROCESSOR || Print Stored

Solutions

Figure 14. Flow Chart of the Computer Program Bellair
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(3) Initialize Time. Proposed computer program will include statistical analysis of sash positions that
depend on the time of the day and on the FH/ BSC schedules. The third block of the flow chart initiaizes
the time of the day used later to access the fume hood schedules.

(4) Initialize Air flow and Setpoints. In thisblock the air flow at each terminal arc will be initialized
based on the average air velocity (for example, 7 m/s). The air flows for the common duct sections will
be calculated. Then the setpoints of each damper and VFD will be initialized.

(5) Position of Sashes. Using the time of the day selected in the block 2 and the schedule for a particular
FH/BSC the program will select the position of the sash.

(6) Variable Fittings. Computation of C-coefficients hasto be performed for variable fittings only using
the locd fitting library located in RAM. These cdculations use flows, velocities, and Re coefficients
which are changing at each iteration. Also, calculation is performed at this block for FH/BSC C-
coefficients based on the sash position selected in the previous block.

(7) Air flow Distribution. This block represents the major part of the solver that is the calculation of air
flow distribution based on pressure and air mass balancing equations using the one of the methods
explained above (Newton, Tensor, or Homotopy). The results of this calculation isthe air flows,
velocities, and temperatures at each duct section, and pressures at each node, as well as fan flows and
tota flows passing each element, including rooms. The true air flow distribution can be achieved as a
result of iteration process. Therefore, after block 7 has been executed, there is a check for convergence
and areturn to the block 6 if convergence has not yet been achieved.

(8) Control System Setpoints. In the previous block air flow calculation was based on the initidized
setpoints. In this block setpoints will be assigned for each controller based on the actua air flows,
pressures, pressure differences, and velocities calculated in the block 7, and, after checking for the
convergence, calculating process will return to block 6. Convergence at this step means that, as results of
iteration, there is no significant change in setpoints for al control devices.

Thereis apossibility that, in spite of many iterations, converging does not occur after alarge number of
iterations (N = max). This can happen because of the overdefined control system that produces unlimited
number of solution. The computer will detect such case and execution will be terminated in order to give
user an opportunity to analyze the system and to cure the problem.

(9) Range Checking. At previous steps air distribution is obtained for initially selected time of the day at
randomly opened sashes. At thistime air flow, pressure difference, and temperature are checked at each
room and air velocity is checked at each sash and at stack discharge. |If these parameters are out of the
minimum-maximum range presented in input data this case is considered as a violation and is stored on the
hard disk for further investigation. If thereis no violation the execution will proceed to the next block.

(10) Time Selection. Next timeisrandomly selected. If the number of selections does not exceed the
maximum the processis returning to the block 5 for selecting the position of the sashes. Otherwise
caculation moves to the next block.

(11) Usage (diversity) Factor. Diversty factor is caculated for the supply system under investigation.
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This block includes the Postprocessor.

(12) Postprocessor. Postprocessor displays and prints dl results of calculation.

6. Principles of software development

Computer program Bellair will be divided into five mgjor parts:

(1) GUI preprocessor
2 Global data base
3 Local data base
4 Solver

5) Postprocessor

The main principle of the program architecture is the modular approach using object oriented programming
language C++. The most possible user-friendly input will be developed. Online data checking is one of
the most important parts of the preprocessor.

A flexible units selection system should be implemented where the user will be able to select individua
units from any unit system, as well as recommended Sl, IP, and Metric systems.

Graphically entered topology is planed for the second version of the code. In the first version numerical
linkage between the nodes is proposed. However, selection of fittings and elements should be base on
their graphical representation.

The most difficult part of input datais fitting selection. In order to smplify fitting selection from aloca
fitting library this part of the preprocessor will use drag-and-drop techniques with fitting pictures appearing
on the screen.

The second kind of smplification will be the preselection of fittings prior to their appearance on the screen
smilar to the technique presented in T-Duct. Only applicable fittings will appear for each section. This
selection will be based on the following four conditions:

--  Exhaust/return or supply system. Only fittings that belong to the  required system are
selected. For example, exits will not be selected at dl for exhaust and entries will no
be selected for supply,

-~ Duct shape. Only fittings with the same shepe as calculated duct section would be
displayed,

-- Parent shape. Only fittings having the parent shape the same as parent for a calculated duct
section will be selected. For example, if aduct section isround but its parent is rectangular,
the junction fittings will be selected only having rectangular shape with round parent.

-~ Parent size. C-coefficient for junction depends on size ratio between parent and children
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sections. Program will preselect only those junctions that satisfy the section-parent size
conditions: (1) section size equal its parent size or (2) section part is less size than its parent
Sze.

One of the most common mistakes made by a user is the selection of different junctions for the same node
during straight and branch sections data input. This will be prevented by automatic assignment of the same
junction to the linked section.

Similar to T-Duct, the most important variable will be mass flow not volumetric flow. Therefore, the
volume of flow entering a fan will never be equal to the flow volume at fan discharge.

Statistical analysis will be conducted either by a number of searches assigned by the user, maximum
computer time, or the standard deviation difference.

7. Softwar e implementation plan

The main platform for the BELLAIR code is MS Windows 95/98/NT for IBM PC computers or
compatibles. Programming language is C++, recommended compiler is Visud C++, version 5.0 or higher.
DEMO of the program Bellair will be ingtaled on Internet.

Following steps has to be conducted for development and implementation of computer code:

Preprocessor consists main interaction routines between the user and software.  The program
must be devel oped user-friendly considering unexperienced user having knowledge in duct design
but not in duct smulation. Fitting selection will be organized using drag-and-drop technique. Data
checking should be if possible checked while data entry and the messages should describe the
error as well as present recommendation for its correction. The messages should be divided into
two classes: fatal and warning. It is necessary to have an opportunity to return to any previous
screens. Full capability of insert/copying/moving/deleting any part of the data should be
implemented using data blocking. The most common user mistake, which is selection of different
junctions for the same node, has to be carefully diagnosed and accurately explained. Help screens
should includes examples. Graphic representation and selection shall be used for fitting selection.
Graphic input for topology and length has to be investigated. Following are the steps for developing
the preprocessor:

Architecture

Topology representation (graphical and numerical)

Graphic selection of fittings

Local fitting data base real time development

Input data variables and their units

Screens and menus

Elements and fittings graphics

Data checking and diagnostic

Ontline error messages

Data manipulation routines (browse/insert/copy/move/del ete)

102



Information accessed from the database
Help index, screens, and messages
Input data listing

Classes

Data Base must be developed for fittings and equipment, roughness, specification and cost data.

Fittings development and population

Duct roughness

Elements data

Program messages (data driven information)
Graphic representation of fittings and e ements

Solver consstsdl calculation routines. It will include mgjor three parts. hydraulics, control,
statistics. The hydraulics part will consist three following methods: Newton, tensor, and
homotopy. The selection of a method will be performed automatically by the program.
Following are the development steps:

Architecture

Algorithm

Local fitting library access

Element data access

Fitting tables access and approximation
Duct hydraulics

Heat loss and air leskage

Newton method calculation

Tensor method calculation

Homotopy method calculation

Control equipment simulation
Statistical data selection and recording
Classes

Output data storing

Postprocessor will be developed for displaying and printing the results. 1t will be linked to the
Preprocessor which will allow to perform interactive studies. The development of Postprocessor
includes:

Output screens

Graphical fan-system characteristics
Graphica pressure diagrams

Hard ligting of the results

Classes

Installation program will alow user to install software on his computer.
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u Program installation routines using WISE program
Demo development will include

Algorithm

Screens

Subroutines

Main program
HTML programming
Internet downloading

Manual has to include following sections:

Abstract

License and disclaimer
Program overview

Hardware requirements
Program ingtalation

Quick start

Practicing with program

Run and output

Examples

Data verification and validation

Testing

u Alphatesting
u Betatesting
n Code correction and modification

Publicity

u Articles publication

u Presentations at conferences
u Teaching seminars

u User group

Program support is one of the most important part of the implementation plan. In spite of the
fact that development of the software is plan to be budgeted, a support should be profit based.
It includes:

u Perform software house functions
u Telephone support
u E-mail/fax written support

104



u Update information

8. Conclusion

The purpose of the project is to develop and implement a practical tool, a computer code that can be used
by HVAC engineersin studying, designing, and retrofitting of air distribution systems in research
[aboratories.

The proposed computer code, named Bdlair, will alow HVAC engineers to calcuate actual airflow,
pressures, and fan operating points in laboratory multi-fan air distribution systems as well as static pressure
in laboratory spaces at different operating conditions where space pressurization, confinement zoning, and
flow/pressure stability are the most important requirements. Also, the computer code will be capable of
modeling the control of each fan or damper from a sensor located in any place of the system specified by
the user including ducts, laboratories, cabinets, exhaust stack discharge, etc. The control parameters could
be static pressure, total pressure, airflow volume, air velocity, temperature, and pressure or temperature
difference.

There are four major steps of multi-fan system simulation:

(1) Defining air flows and pressures for initialy set control devices,

(2) Adjustment of positions of control devices in accordance with their set-up,

(3) Random sdlection of the positions of fume hood/BSC' s sashes based on their loading
schedules,

(4) System performance analysis.

Network simulation problem requires a solution for alarge system of simultaneous nonlinear algebraic

equations. Numerous methods capable of solving nonlinear algebraic equations for both branched and

cycled networks simulation are studied. The most promising approaches for cycle systems are the family

of Newton Affine Invariant methods, the Tensor methods, and the Homotopy methods. If a good initia

guessis known, the best choiceisone of the Newton Affine Invariant methods. For a comparatively
large

problem, when time for solution is significant, the Tensor methods are a good choice. For the most

practical cases, when either: (1) time is deficient to search for a good initia guess, (2) automation is
needed

for different types of technical solutions evauation, or (3) parametric evaluation is necessary, Homotopy

methods are the best. All three approaches are expected to be included into the computer code and
selected

automaticaly during the calculation.

All methods for solving nonlinear equations involve the solution of many sets of linear agebraic equations.
It is possible for small tasks to use smple methods based on direct solution techniques. Whenever there is
Sparse matrix, sparse mode eimination techniques may be successfully used. For large and super large
tasks the Krylov’s method expected to be applied.
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Control system simulation requires the use of mathematica programming technique to get the minimization
of an objective function that describes residuals. The Vicente's algorithm is suggested for solving this
problem.

As aresult of such calculation user receives airflow, pressures, and velocities at al system sections and
pressures at al system nodes. This includes workspaces, manifolds, fume hood inlet sashes, stack
exhausts, and ductworks. User aso receives fan operating points, position of all system control devices,
and electrical energy consumption. Air system performance planed to be studied by randomly selected
positions of sashes and other laboratory units. As soon as user inputs the loading schedule for each unit,
computer randomizes the position of sashes/units and cal culates the total usage (diversity) factor asa
recommendation for optimum design.

There are four magjor fragments of the Bellair program:

(1) Preprocessor that contains of data input, verification, and printout,
(2) Solver that includes calculation routines,

(3) Postprocessor that performs verification and printout of the results,
(4) Populated database.

Following are the main steps of development and implementation of the Bellair program:

(1) Create the program architecture,

(2) Perform coding and debugging,

(3) Provide efficient testing,

(4) Develop and populate the data base

(5 Develop Demo and ingtall on the Internet,

(6) Writethe user manual,

(7) Provide program ingtalment, update, and support.

The recommended platform for the Bellair code is MS Windows 95/98/NT for IBM PC computers,
programming language is C++, recommended compiler is Visua C++.
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